Büchi Complementation and Size-Change Termination

We compare tools for complementing nondeterministic Buchi automata with a recent termination-analysis algorithm. Complementation of Buchi automata is a key step in program verification. Early constructions using a Ramsey-based argument have been supplanted by rank-based constructions with exponentially better bounds. In 2001 Lee et al. presented the size-change termination (SCT) problem, along with both a reduction to Buchi automata and a Ramsey-based algorithm. This algorithm strongly resembles the initial complementation constructions for Buchi automata. We prove that the SCT algorithm is a specialized realization of the Ramsey-based complementation construction. Surprisingly, empirical analysis suggests Ramsey-based approaches are superior over the domain of SCT problems. Upon further analysis we discover an interesting property of the problem space that both explains this result and provides a chance to improve rank-based tools. With these improvements, we show that theoretical gains in efficiency are mirrored in empirical performance.

[1]  Amir M. Ben-Amram,et al.  Program termination analysis in polynomial time , 2002, TOPL.

[2]  A. Prasad Sistla,et al.  Deciding Full Branching Time Logic , 1985, Inf. Control..

[3]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[4]  Moshe Y. Vardi Automata-Theoretic Model Checking Revisited , 2007, VMCAI.

[5]  Jean-François Raskin,et al.  Improved Algorithms for the Automata-Based Approach to Model-Checking , 2007, TACAS.

[6]  Yaacov Choueka,et al.  Theories of Automata on omega-Tapes: A Simplified Approach , 1974, J. Comput. Syst. Sci..

[7]  Neil D. Jones,et al.  Termination Analysis of the Untyped lamba-Calculus , 2004, RTA.

[8]  Sven Schewe,et al.  Büchi complementation made tight , 2009, STACS.

[9]  Neil D. Jones,et al.  Termination Analysis of Higher-Order Functional Programs , 2005, APLAS.

[10]  Jean-François Raskin,et al.  Antichains for the Automata-Based Approach to Model-Checking , 2009, Log. Methods Comput. Sci..

[11]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Applications to Temporal Logic (Extended Abstract) , 1985, ICALP.

[12]  O. Kupermann,et al.  Synthesizing distributed systems , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[13]  Neil D. Jones,et al.  The size-change principle for program termination , 2001, POPL '01.

[14]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[15]  Moshe Y. Vardi,et al.  Efficient Büchi Universality Checking , 2010, TACAS.

[16]  Parosh Aziz Abdulla,et al.  When Simulation Meets Antichains , 2010, TACAS.

[17]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..

[18]  Orna Kupferman,et al.  Weak alternating automata are not that weak , 2001, TOCL.

[19]  Seth Fogarty,et al.  Buchi containment and size-change termination , 2009 .

[20]  David Wahlstedt Detecting termination using size-change in parameter values , 2000 .

[21]  Moshe Y. Vardi,et al.  Experimental Evaluation of Classical Automata Constructions , 2005, LPAR.