Adaptively Biased Molecular Dynamics: An Umbrella Sampling Method With a Time-Dependent Potential

We discuss an adaptively biased molecular dynamics (ABMD) method for the computation of a free energy surface for a set of reaction coordinates. The ABMD method belongs to the general category of umbrella sampling methods with an evolving biasing potential. It is characterized by a small number of control parameters and an O(t) numerical cost with simulation time t. The method naturally allows for extensions based on multiple walkers and replica exchange mechanism. The workings of the method are illustrated with a number of examples, including sugar puckering, and free energy landscapes for polymethionine and polyproline peptides, and for a short -turn peptide. ABMD has been implemented into the latest version (Case et al.,

[1]  A. Preusser,et al.  Algorithm 671: FARB-E-2D: fill area with bicubics on rectangles—a contour plot program , 1989, TOMS.

[2]  M. Karplus,et al.  Stochastic boundary conditions for molecular dynamics simulations of ST2 water , 1984 .

[3]  Alessandro Laio,et al.  Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. , 2003, Physical review letters.

[4]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[5]  D. Cremer,et al.  General definition of ring puckering coordinates , 1975 .

[6]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[7]  A. Laio,et al.  Equilibrium free energies from nonequilibrium metadynamics. , 2006, Physical Review Letters.

[8]  W. D. Phillips Restricted Rotation in Amides as Evidenced by Nuclear Magnetic Resonance , 1955 .

[9]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[10]  Gabriel Stoltz,et al.  Computation of free energy profiles with parallel adaptive dynamics. , 2007, The Journal of chemical physics.

[11]  Exploring intramolecular reactions in complex systems with metadynamics: the case of the malonate anions. , 2005, The journal of physical chemistry. A.

[12]  A. Laio,et al.  Flexible docking in solution using metadynamics. , 2005, Journal of the American Chemical Society.

[13]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[14]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[15]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[16]  D. Case,et al.  Theory and applications of the generalized born solvation model in macromolecular simulations , 2000, Biopolymers.

[17]  M. Levitt Conformational preferences of amino acids in globular proteins. , 1978, Biochemistry.

[18]  M. Karplus,et al.  SIMULATIONS OF MACROMOLECULES BY MULTIPLE TIME-STEP METHODS , 1995 .

[19]  Alessandro Laio,et al.  A minimum free energy reaction path for the E2 reaction between fluoro ethane and a fluoride ion. , 2004, Journal of the American Chemical Society.

[20]  Volodymyr Babin,et al.  Adaptively biased molecular dynamics for free energy calculations. , 2007, The Journal of chemical physics.

[21]  Gregory D. Hawkins,et al.  Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium , 1996 .

[22]  A. Laio,et al.  Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. , 2006, Journal of the American Chemical Society.

[23]  Gregory D. Hawkins,et al.  Pairwise solute descreening of solute charges from a dielectric medium , 1995 .

[24]  Gregory K. Schenter,et al.  Generalized transition state theory in terms of the potential of mean force , 2003 .

[25]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[27]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[28]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[29]  A. Laio,et al.  Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. , 2006, The journal of physical chemistry. B.

[30]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[31]  L. Pauling,et al.  The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[33]  M. Parrinello,et al.  Ab Initio Study of Dehydroxylation−Carbonation Reaction on Brucite Surface , 2004 .

[34]  Y. Sugita,et al.  Multidimensional replica-exchange method for free-energy calculations , 2000, cond-mat/0009120.

[35]  R. Hooft,et al.  An adaptive umbrella sampling procedure in conformational analysis using molecular dynamics and its application to glycol , 1992 .

[36]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[37]  Volodymyr Babin,et al.  The free energy landscape of small peptides as obtained from metadynamics with umbrella sampling corrections. , 2006, The Journal of chemical physics.

[38]  A. Tonelli An estimate of the barriers hindering rotation about the C-alpha-C' bond between the cis' and trans' conformations in an isolated L-proline residue. , 1973, Journal of the American Chemical Society.

[39]  Alessandro Laio,et al.  Microscopic Mechanism of Antibiotics Translocation through a Porin. , 2004, Biophysical journal.

[40]  A. Laio,et al.  A bias-exchange approach to protein folding. , 2007, The journal of physical chemistry. B.

[41]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[42]  Alessandro Laio,et al.  Azulene-to-naphthalene rearrangement: the Car-Parrinello metadynamics method explores various reaction mechanisms. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  B. Matthews,et al.  Structural basis of amino acid alpha helix propensity. , 1993, Science.

[44]  Y. Kang,et al.  Cis-trans isomerization and puckering of proline residue. , 2004, Biophysical chemistry.

[45]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[46]  K. Wüthrich,et al.  Nmr studies of the rates of proline cis–trans isomerization in oligopeptides , 1981 .

[47]  S. Al-Karadaghi,et al.  Occurrence, conformational features and amino acid propensities for the pi-helix. , 2002, Protein engineering.

[48]  T. Ikeda,et al.  Hydration structure of Y3+ and La3+ compared: an application of metadynamics. , 2005, The Journal of chemical physics.

[49]  D. Truhlar,et al.  Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions , 2004 .

[50]  G Fischer,et al.  Side-chain effects on peptidyl-prolyl cis/trans isomerisation. , 1998, Journal of molecular biology.

[51]  M. Parrinello,et al.  Proton transfer in heterocycle crystals. , 2004, Physical review letters.

[52]  Deprotonation of solvated formic acid: Car-Parrinello and metadynamics simulations. , 2006, The journal of physical chemistry. B.

[53]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[54]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .