Imine polymers containing chiral nanohoops in the backbone obtained through [2 + 2] cyclocondensation

[1]  T. Ogoshi,et al.  A rod-like phenolic π-conjugated polymer with pillar[5]arene units in its main chain , 2017 .

[2]  P. Jagadesan,et al.  The excited-state intramolecular proton transfer properties of three imine-linked two-dimensional porous organic polymers , 2017 .

[3]  Yan Liu,et al.  Chiral Covalent Organic Frameworks with High Chemical Stability for Heterogeneous Asymmetric Catalysis. , 2017, Journal of the American Chemical Society.

[4]  Shilun Qiu,et al.  Porous Organic Materials: Strategic Design and Structure-Function Correlation. , 2017, Chemical reviews.

[5]  Yingchao Yu,et al.  Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology. , 2016, ACS macro letters.

[6]  J. Segura,et al.  Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. , 2016, Chemical Society reviews.

[7]  D. Wei,et al.  Semiconducting covalent organic frameworks: a type of two-dimensional conducting polymers , 2016 .

[8]  Xiao Feng,et al.  Recent advances of covalent organic frameworks in electronic and optical applications , 2016 .

[9]  Chen Li,et al.  A fishing rod-like conjugated polymer bearing pillar[5]arenes. , 2016, Chemical communications.

[10]  Hong Xia,et al.  A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu(2+) ions. , 2016, Chemical communications.

[11]  A. Corma,et al.  Ordered covalent organic frameworks, COFs and PAFs. From preparation to application , 2016 .

[12]  Clara H. McCreery,et al.  Few-layer, large-area, 2D covalent organic framework semiconductor thin films. , 2015, Chemical communications.

[13]  Pratap Vishnoi,et al.  [3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing , 2015 .

[14]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[15]  L. Dai,et al.  Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications , 2015 .

[16]  S. Irle,et al.  Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts. , 2014, Chemistry.

[17]  F. Toma,et al.  Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework , 2014 .

[18]  Hong Xia,et al.  A 2D azine-linked covalent organic framework for gas storage applications. , 2014, Chemical communications.

[19]  Severin T. Schneebeli,et al.  Amino-functionalized pillar[5]arene. , 2014, Chemistry.

[20]  Yushan Yan,et al.  3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. , 2014, Angewandte Chemie.

[21]  A. Nagai,et al.  An azine-linked covalent organic framework. , 2013, Journal of the American Chemical Society.

[22]  Shu-Lan Sun,et al.  Pillar[5]arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor , 2013 .

[23]  T. E. Reich,et al.  A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. , 2013, Chemistry.

[24]  I. Goldberg,et al.  Tubular conjugated polymer for chemosensory applications. , 2012, Journal of the American Chemical Society.

[25]  J. F. Stoddart,et al.  Covalent Organic Frameworks with High Charge Carrier Mobility , 2011 .

[26]  Christian J. Doonan,et al.  Crystalline covalent organic frameworks with hydrazone linkages. , 2011, Journal of the American Chemical Society.

[27]  A. Sikora,et al.  A study of thermal, optical and electrical properties of new branched triphenylamine-based polyazomethines , 2010 .

[28]  T. Ivan,et al.  Triphenylamine-based rhombimine macrocycles with solution interconvertable conformation. , 2010, Organic & biomolecular chemistry.

[29]  X. Bai,et al.  Multifunctional, photochromic, acidichromic, electrochromic molecular switch: Novel aromatic poly(azomehine)s containing triphenylamine Group , 2009 .

[30]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[31]  S. Matsumoto,et al.  Phenyleneethynylene Macrocycle-Fused Phenylacetylene Monomers : Synthesis and Polymerization , 2009 .

[32]  L. Stafie,et al.  Synthesis and Characterization of Linear, Branched and Hyperbranched Triphenylamine-Based Polyazomethines , 2009 .

[33]  B. Babu,et al.  Chiral Macrocyclic Schiff Bases: An Overview. , 2008 .

[34]  A. Iwan,et al.  Processible polyazomethines and polyketanils: From aerospace to light-emitting diodes and other advanced applications , 2008 .

[35]  Jadwiga Gajewy,et al.  Structural constraints for the formation of macrocyclic rhombimines , 2007 .

[36]  P. A. Vigato,et al.  The development of compartmental macrocyclic Schiff bases and related polyamine derivatives , 2007 .

[37]  Y. Ustynyuk,et al.  Metal-free methods in the synthesis of macrocyclic schiff bases. , 2007, Chemical reviews.

[38]  B. Viswanathan,et al.  Synthesis and crystal structure of [2 + 2] calixsalens. , 2006, Organic & biomolecular chemistry.

[39]  J. Gawroński,et al.  Unprecedented selectivity in the formation of large-ring oligoimines from conformationally bistable chiral diamines. , 2006, Organic letters.

[40]  M. Kwit,et al.  Trianglamines--readily prepared, conformationally flexible inclusion-forming chiral hexamines. , 2006, Chemistry.

[41]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[42]  N. Kuhnert,et al.  Synthesis of chiral nonracemic polyimine macrocycles from cyclocondensation reactions of biaryl and terphenyl aromatic dicarboxaldehydes and 1R,2R-diaminocyclohexane , 2005 .

[43]  M. Grigoraş,et al.  Synthesis and characterization of some carbazole-based imine polymers , 2005 .

[44]  D. Opris,et al.  Shape-Persistent Macrocycles with Bipyridine Units: Progress in Accessibility and Widening of Applicability , 2005 .

[45]  A. Clearfield,et al.  Novel chiral "calixsalen" macrocycle and chiral robson-type macrocyclic complexes. , 2005, Inorganic chemistry.

[46]  C. O. Catanescu,et al.  Imine Oligomers and Polymers , 2004 .

[47]  J. Gladysz,et al.  Synthesis, structure, and reactivity of sp carbon chains with bis(phosphine) pentafluorophenylplatinum endgroups: butadiynediyl (C4) through hexadecaoctaynediyl (C16) bridges, and beyond. , 2003, Chemistry.

[48]  T. Swager,et al.  A proton-doped calix[4]arene-based conducting polymer. , 2003, Journal of the American Chemical Society.

[49]  N. Kuhnert,et al.  Synthesis of novel chiral non-racemic substituted trianglimine and trianglamine macrocycles , 2002 .

[50]  O. Cătănescu,et al.  Poly(azomethine)s , 2002 .

[51]  P. Junk,et al.  (3+3)-cyclocondensation of the enantiopure and racemic forms of trans-1,2-diaminocyclohexane with terephthaldehyde: formation of diastereomeric molecular triangles and their stereoselective solid-state stacking into microporous chiral columns , 2001 .

[52]  Gawronski,et al.  Designing large triangular chiral macrocycles: efficient , 2000, The Journal of organic chemistry.

[53]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[54]  V. Percec,et al.  Design of side chain and main chain liquid crystalline polymers containing supramolecular quasi-rigid-rodlike mesogens obtained from collapsed main chain macrocyclics , 1996 .

[55]  H. Gibson,et al.  Macrocyclic polymers. 2. Synthesis of poly(amide crown ethers) based on bis(5-carboxy-1,3-phenylene)-32-crown-10. Network formation through threading , 1992 .

[56]  H. Gibson,et al.  Macrocyclic polymers. 1. Synthesis of a poly(ester crown) based on bis(5-carboxy-1,3-phenylene)-32-crown-10 and 4,4'-isopropylidenediphenol (bisphenol A) , 1992 .