Generalized irregular low-density (Tanner) codes based on Hamming component codes

In this paper we introduce the construction of new families of error-correcting codes based on Irregular low-density parity-check codes, which we called generalized irregular low density (GILD) codes, where as component codes, single-error correcting Hamming codes are used instead of single-error detecting parity-check codes. The decoding of GILD Is based on simple and fast SISO (soft input-soft output) decoding of Hamming component codes. Simulation results over an AWGN channel indicate that excellent performances can be achieved.

[1]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[2]  David J. C. MacKay,et al.  Comparison of constructions of irregular Gallager codes , 1999, IEEE Trans. Commun..

[3]  M. Luby,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[4]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[5]  D. Spielman,et al.  Expander codes , 1996 .

[6]  Michael Lentmaier,et al.  On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.

[7]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[8]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[9]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[10]  J. Boutros,et al.  Generalized low density (Tanner) codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[11]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.