Type-1 and Type-2 Fuzzy Neural Networks

The subject of this chapter is Type-1 and type-2 fuzzy neural networks. This chapter is source of information on neuro-fuzzy computing, basic architectures and operations of fuzzy feed-forward and recurrent neural networks, several types of fuzzy logical neuron models, logic-oriented neural networks, general and interval type-2 fuzzy neural network’s features and their training algorithms.

[1]  Michael Negnevitsky,et al.  Artificial Intelligence: A Guide to Intelligent Systems , 2001 .

[2]  Witold Pedrycz,et al.  Fuzzy relational neural network , 2006, Int. J. Approx. Reason..

[3]  Witold Pedrycz,et al.  A motion compression/reconstruction method based on max t-norm composite fuzzy relational equations , 2006, Inf. Sci..

[4]  Witold Pedrycz,et al.  Efficient decomposition methods of fuzzy relation and their application to image decomposition , 2005, Appl. Soft Comput..

[5]  Qinghua Zhang,et al.  Multidimensional wavelet frames , 1995, IEEE Trans. Neural Networks.

[6]  Shigeo Abe,et al.  Fuzzy rules extraction directly from numerical data for function approximation , 1995, IEEE Trans. Syst. Man Cybern..

[7]  Ronald R. Yager,et al.  Uninorms in fuzzy systems modeling , 2001, Fuzzy Sets Syst..

[8]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[9]  Witold Pedrycz,et al.  Fuzzy relational compression , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Rafik A. Aliev,et al.  Soft Computing and its Applications in Business and Economics , 2004, Studies in Fuzziness and Soft Computing.

[11]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[12]  Oscar Castillo,et al.  Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods in Modular Neural Networks for Multimodal Biometry and Its Optimization with Genetic Algorithms , 2009, Soft Computing for Hybrid Intelligent Systems.

[13]  Witold Pedrycz,et al.  The genetic development of ordinal sums , 2005, Fuzzy Sets Syst..

[14]  W. Pedrycz,et al.  OR/AND neuron in modeling fuzzy set connectives , 1994, IEEE Trans. Fuzzy Syst..

[15]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[16]  Witold Pedrycz,et al.  Heterogeneous fuzzy logic networks: fundamentals and development studies , 2004, IEEE Transactions on Neural Networks.

[17]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[18]  Witold Pedrycz,et al.  Distributed fuzzy system modeling , 1995, IEEE Trans. Syst. Man Cybern..

[19]  Rafik A. Aliev,et al.  Genetic algorithm-based learning of fuzzy neural networks. Part 1: feed-forward fuzzy neural networks , 2001, Fuzzy Sets Syst..

[20]  Sankar K. Pal,et al.  Neuro-Fuzzy Pattern Recognition , 1999 .

[21]  Daniel W. C. Ho,et al.  Fuzzy wavelet networks for function learning , 2001, IEEE Trans. Fuzzy Syst..

[22]  Sankar K. Pal,et al.  Fuzzy multi-layer perceptron, inferencing and rule generation , 1995, IEEE Trans. Neural Networks.

[23]  Marc Thuillard Wavelets in Soft Computing , 2001, World Scientific Series in Robotics and Intelligent Systems.

[24]  Bijan Fazlollahi,et al.  Recurrent Fuzzy Neural Networks and Their Performance Analysis , 2008 .

[25]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[26]  Witold Pedrycz,et al.  Fuzzy Systems Engineering , 2007 .

[27]  J. Casillas Interpretability issues in fuzzy modeling , 2003 .

[28]  Bart Kosko,et al.  Neural networks and fuzzy systems , 1998 .

[29]  E. H. Mamdani,et al.  Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis , 1976, IEEE Transactions on Computers.

[30]  Okyay Kaynak,et al.  A type-2 fuzzy wavelet neural network for system identification and control , 2013, J. Frankl. Inst..

[31]  Plamen P. Angelov,et al.  A fuzzy controller with evolving structure , 2004, Inf. Sci..

[32]  R. E. Edwards,et al.  Functional Analysis: Theory and Applications , 1965 .

[33]  James J. Buckley,et al.  Universal fuzzy controllers , 1992, Autom..

[34]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[35]  Jun Zhang,et al.  Wavelet neural networks for function learning , 1995, IEEE Trans. Signal Process..

[36]  Okyay Kaynak,et al.  Fuzzy Wavelet Neural Networks for Identification and Control of Dynamic Plants—A Novel Structure and a Comparative Study , 2008, IEEE Transactions on Industrial Electronics.

[37]  W. Pedrycz Processing in relational structures: fuzzy relational equations , 1991 .

[38]  H. Ishibuchi,et al.  A learning algorithm of fuzzy neural networks with triangular fuzzy weights , 1995 .

[39]  Urszula Markowska-Kaczmar,et al.  Fuzzy logic and evolutionary algorithm - two techniques in rule extraction from neural networks , 2005, Neurocomputing.

[40]  W. Rudin Principles of mathematical analysis , 1964 .

[41]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[42]  Witold Pedrycz,et al.  Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization , 2011, Inf. Sci..

[43]  Oscar Castillo,et al.  Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks Illustrated with the Case of Non-linear Identification , 2009, IFSA/EUSFLAT Conf..

[44]  Qinghua Zhang,et al.  Wavelet networks , 1992, IEEE Trans. Neural Networks.

[45]  Chi-Hsu Wang,et al.  Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN) , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  Sankar K. Pal,et al.  Logical operation based fuzzy MLP for classification and rule generation , 1994, Neural Networks.

[47]  M. Sugeno,et al.  Derivation of Fuzzy Control Rules from Human Operator's Control Actions , 1983 .

[48]  Khaled Assaleh,et al.  A wavelet- and neural network-based voice system for a smart wheelchair control , 2011, J. Frankl. Inst..

[49]  Witold Pedrycz,et al.  Neurocomputations in Relational Systems , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Witold Pedrycz,et al.  The potential of fuzzy neural networks in the realization of approximate reasoning engines , 2006, Fuzzy Sets Syst..

[51]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[52]  Richard M. Golden,et al.  Mathematical Methods for Neural Network Analysis and Design , 1996 .

[53]  Ivica Kostanic,et al.  Principles of Neurocomputing for Science and Engineering , 2000 .

[54]  Witold Pedrycz Genetic tolerance fuzzy neural networks: From data to fuzzy hyperboxes , 2007, Neurocomputing.

[55]  Congxin Wu,et al.  Approximation capabilities of multilayer fuzzy neural networks on the set of fuzzy-valued functions , 2009, Inf. Sci..

[56]  Witold Pedrycz,et al.  Fuzzy-set based models of neurons and knowledge-based networks , 1993, IEEE Trans. Fuzzy Syst..

[57]  Bijan Fazlollahi,et al.  Evolutionary algorithm-based learning of fuzzy neural networks. Part 2: Recurrent fuzzy neural networks , 2009, Fuzzy Sets Syst..

[58]  Witold Pedrycz,et al.  Fuzzy neural networks and neurocomputations , 1993 .

[59]  Rafik A. Aliev,et al.  Soft Computing and Its Applications , 2001 .

[60]  Hongxing Li,et al.  Fuzzy Neural Network Theory and Application , 2004, Series in Machine Perception and Artificial Intelligence.

[61]  W. Pedrycz,et al.  An introduction to fuzzy sets : analysis and design , 1998 .

[62]  Magne Setnes,et al.  Rule-based modeling: precision and transparency , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[63]  A. H. Stone,et al.  Products of nearly compact spaces , 1966 .

[64]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[65]  Rahib Hidayat Abiyev Fuzzy wavelet neural network for prediction of electricity consumption , 2008, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[66]  AbiyevRahib h. Fuzzy wavelet neural network for prediction of electricity consumption , 2009 .

[67]  James J. Buckley,et al.  Can fuzzy neural nets approximate continuous fuzzy functions , 1994 .

[68]  Hak-Keung Lam,et al.  Tuning of the structure and parameters of a neural network using an improved genetic algorithm , 2003, IEEE Trans. Neural Networks.

[69]  Mohammad Teshnehlab,et al.  Identification of cement rotary kiln using hierarchical wavelet fuzzy inference system , 2012, J. Frankl. Inst..

[70]  Witold Pedrycz,et al.  Genetically optimized logic models , 2005, Fuzzy Sets Syst..

[71]  Oscar Castillo,et al.  Universal Approximation of a Class of Interval Type-2 Fuzzy Neural Networks in Nonlinear Identification , 2013, Adv. Fuzzy Syst..

[72]  Witold Pedrycz,et al.  Fuzzy Systems Engineering - Toward Human-Centric Computing , 2007 .

[73]  Robert Fullér,et al.  Introduction to neuro-fuzzy systems , 1999, Advances in soft computing.

[74]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..