Hybrid Particle-Continuum Simulations of Hypersonic Flow Over a Hollow-Cylinder-Flare Geometry

A modular particle-continuum numerical method is used to simulate steady-state hypersonic flow over a hollow-cylinder-flare geometry. The resulting flowfield involves a mixture of rarefied nonequilibrium flow and high-density continuum flow. The hybrid particle-continuum method loosely couples direct simulation Monte Carlo and Navier-Stokes methods, which operate in different regions, use different mesh densities, and are updated using different-sized time steps. Hybrid numerical results are compared with full particle and full continuum simulations as well as with experimental data. The hybrid particle-continuum simulations are demonstrated to reproduce experimental and full particle simulation results for surface and flowfield properties including velocity slip, temperature jump, thermal nonequilibrium, heating rates, and pressure distributions with high accuracy. The hybrid method, which uses particle simulation next to the surface, is also shown to predict accurate heating rates even when a highly dissipative numerical scheme is used for the continuum solver. For this particular flow, a hybrid simulation is obtained with modest computational savings over full particle simulation.

[1]  David B. Goldstein,et al.  Hybrid Euler/Particle Approach for Continuum/Rarefied Flows , 1998 .

[2]  Graham V. Candler,et al.  CFD Validation for Hypersonic Flight: Hypersonic Double-Cone Flow Simulations , 2002 .

[3]  Iain D. Boyd,et al.  Monte Carlo computations of hypersonic interacting flows , 2001 .

[4]  Leonardo C. Scalabrin,et al.  Hybrid Particle-Continuum Simulations of Low Knudsen Number Hypersonic Flows , 2007 .

[5]  Gary C. Cheng,et al.  Development and verification of a coupled DSMC-NS scheme using unstructured mesh , 2006, J. Comput. Phys..

[6]  David B. Goldstein,et al.  Hybrid Euler/Direct Simulation Monte Carlo Calculation of Unsteady Slit Flow , 2000 .

[7]  Graham V. Candler,et al.  Effect of numerics on navier-stokes computations of hypersonic double-cone flows , 2005 .

[8]  Christopher J. Roy,et al.  DSMC and Navier-Stokes Predictions for Hypersonic Laminar Interacting Flows , 2001 .

[9]  Thomas E. Schwartzentruber,et al.  Hybrid Particle-Continuum Simulations of Nonequilibrium Hypersonic Blunt-Body Flowfields , 2006 .

[10]  Thomas E. Schwartzentruber,et al.  Modular Implementation of a Hybrid DSMC-NS Algorithm for Hypersonic Non-Equilibrium Flows , 2007 .

[11]  Leonardo C. Scalabrin,et al.  Numerical Simulation of Weakly Ionized Hypersonic Flow for Reentry Configurations , 2006 .

[12]  Peter A. Gnoffo,et al.  Aerothermodynamic Analyses of Towed Ballutes , 2006 .

[13]  James N. Moss,et al.  DSMC Computations for Regions of Shock/Shock and Shock/Boundary Layer Interaction , 2001 .

[14]  Alejandro L. Garcia,et al.  Generation of the Chapman-Enskog Distribution , 1998 .

[15]  Timothy Wadhams,et al.  CODE VALIDATION STUDY OF LAMINAR SHOCKIBOUNDARY LAYER AND SHOCK/SHOCK INTERACTIONS IN HYPERSONIC FLOW Part B: Comparison \\ith Navier-Stokes and DSMC Solutions , 2001 .

[16]  Graham V. Candler,et al.  Navier-stokes predictions of hypersonic double-cone and cylinder-flare flow fields , 2001 .

[17]  J. N. Moss Direct Simulation Monte Carlo Simulations of Ballute Aerothermodynamics Under Hypersonic Rarefied Conditions , 2007 .

[18]  Alejandro L. Garcia,et al.  Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics , 2004 .

[19]  Quanhua Sun,et al.  Evaluation of Macroscopic Properties in the Direct Simulation Monte Carlo Method , 2005 .

[20]  Thomas E. Schwartzentruber,et al.  A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows , 2007, J. Comput. Phys..

[21]  John C. Tannehill,et al.  Computation of Hypersonic Laminar Separated Flows using an Iterated PNS Algorithm , 2001 .

[22]  Iain D. Boyd,et al.  Analysis of rotational nonequilibrium in standing shock waves of nitrogen , 1990 .

[23]  Iain D. Boyd,et al.  Hybrid DSMC-CFD Simulations of Hypersonic Flow Over Sharp and Blunted Bodies , 2003 .

[24]  Hassan Hassan,et al.  Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods , 1996 .

[25]  Stefan Dietrich,et al.  Scalar and Parallel Optimized Implementation of the Direct Simulation Monte Carlo Method , 1996 .

[26]  Thomas E. Schwartzentruber,et al.  A hybrid particle-continuum method applied to shock waves , 2006, J. Comput. Phys..

[27]  Peter A. Gnoffo,et al.  Paper 2001-1025 CFD Validation Studies for Hypersonic Flow Prediction , 2022 .

[28]  James N. Moss,et al.  Direct Simulation Monte Carlo Simulations of Hypersonic Flows With Shock Interactions , 2005 .

[29]  Graham V. Candler,et al.  The solution of the Navier-Stokes equations using Gauss-Seidel line relaxation , 1989 .

[30]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[31]  Hassan Hassan,et al.  A decoupled DSMC/Navier-Stokes analysis of a transitional flow experiment , 1996 .

[32]  Graham V. Candler,et al.  Predicting failure of the continuum fluid equations in transitional hypersonic flows , 1994 .