The Optimal Projection Equations for Fixed-Order, Sampled-Data Dynamic Compensation with Computation Delay

For an LQG-type sampled-data regulator problem which accounts for computational delay and utilizes an averaging A/D device, the equivalent discrete-time problem is shown to be of increased order due to the inclusion of delayed measurement states. The optimal projection equations for reduced-order, discrete-time compensation are applied to the augmented problem to characterize low-order controllers. The design results are illustrated on a 10th-order flexible beam example.

[1]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[2]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[3]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[4]  Tsutomu Mita Optimal digital feedback control systems counting computation time of control laws , 1984, The 23rd IEEE Conference on Decision and Control.

[5]  K. D. Tocher,et al.  Sampled‐Data Control Systems , 1959 .

[6]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[7]  C. Loan Computing integrals involving the matrix exponential , 1978 .

[8]  M. Athans,et al.  On the behaviour of optimal linear sampled-data regulators† , 1971 .

[9]  P. Dorato,et al.  Optimal linear regulators: The discrete-time case , 1971 .

[10]  Eliahu Ibrahim Jury,et al.  Sampled-data control systems , 1977 .

[11]  Dennis Bernstein,et al.  The optimal projection/maximum entropy approach to designing low-order, robust controllers for flexible structures , 1985, 1985 24th IEEE Conference on Decision and Control.

[12]  D. Bernstein,et al.  The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore , 1985 .

[13]  David Plimpton Lindorff Theory of sampled-data control systems , 1965 .

[14]  D. Bernstein,et al.  The optimal projection equations for reduced-order, discrete-time modeling, estimation, and control , 1986 .

[15]  M. Araki,et al.  Multivariable multirate sampled-data systems: State-space description, transfer characteristics, and Nyquist criterion , 1986 .

[16]  Dennis S. Bernstein,et al.  Optimal Projection/Maximum Entropy: Stochastic Modelling and Reduced-Order Design Synthesis , 1985 .

[17]  Benjamin C. Kuo,et al.  Analysis and Synthesis of Sampled‐Data Control Systems , 1964 .

[18]  Alper K. Caglayan,et al.  A separation theorem for the stochastic sampled-data LQG problem. [control of continuous linear plant disturbed by white noise] , 1976 .

[19]  A. Caglayan,et al.  An algorithm for the weighting matrices in the sampled-data optimal linear regulator problem , 1976 .

[20]  Tosio Kato Perturbation theory for linear operators , 1966 .

[21]  D. Bernstein,et al.  The optimal projection equations for reduced-order state estimation , 1985 .

[22]  D. Bernstein,et al.  The optimal projection equations for reduced-order, discrete-time modelling, estimation and control , 1985, 1985 24th IEEE Conference on Decision and Control.

[23]  Mark J. Balas,et al.  The structure of discrete-time finite-dimensional control of distributed parameter systems , 1984 .

[24]  Michael Athans,et al.  On the behavior of optimal linear sampled-data regulators , 1970 .

[25]  Douglas P. Glasson A New Technique for Multirate Digital Control Design and Sample Rate Selection , 1982 .

[26]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[27]  D. Bernstein,et al.  The optimal projection equations for finite-dimensional fixed-order dynamic compensation of infinite-dimensional systems , 1986 .

[28]  A. R. Tiedemann,et al.  The equivalent discrete-time optimal control problem for continuous-time systems with stochastic parameters , 1984 .