A Very Low Loss 220–325 GHz Silicon Micromachined Waveguide Technology

This letter reports for the first time on a very low loss silicon micromachined waveguide technology, implemented for the frequency band of 220–325 GHz. The waveguide is realized by utilizing a double H-plane split in a three-wafer stack. This ensures very low surface roughness, in particular on the top and bottom surfaces of the waveguide, without the use of any surface roughness reduction processing steps. This is superior to previous micromachined waveguide concepts, including E-plane and single H-plane split waveguides. The measured average surface roughness is 2.14 nm for the top/bottom of the waveguide, and 163.13 nm for the waveguide sidewalls. The measured insertion loss per unit length is 0.02–0.07 dB/mm for 220–325 GHz, with a gold layer thickness of 1 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m on the top/bottom and 0.3  <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m on the sidewalls. This represents, in this frequency band, the lowest loss for any silicon micromachined waveguide published to date and is of the same order as the best metal waveguides.

[1]  C. Jung-Kubiak,et al.  A Silicon Micromachined Eight-Pixel Transceiver Array for Submillimeter-Wave Radar , 2015, IEEE Transactions on Terahertz Science and Technology.

[2]  G. Mourou,et al.  Terahertz attenuation and dispersion characteristics of coplanar transmission lines , 1991 .

[3]  A. R. Kerr,et al.  Loss of Gold Plated Waveguides at 210-280 GHz , 2009 .

[4]  Goutam Chattopadhyay,et al.  Measurement of Silicon Micromachined Waveguide Components at 500–750 GHz , 2014, IEEE Transactions on Terahertz Science and Technology.

[5]  Goutam Chattopadhyay,et al.  A Multistep DRIE Process for Complex Terahertz Waveguide Components , 2016, IEEE Transactions on Terahertz Science and Technology.

[6]  V. Radisic,et al.  WR1.5 Silicon Micromachined Waveguide Components and Active Circuit Integration Methodology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[7]  Sheng-Cai Shi,et al.  WR-3 Band Quasi-Elliptical Waveguide Filters Using Higher Order Mode Resonances , 2017, IEEE Transactions on Terahertz Science and Technology.

[8]  Herbert Zirath,et al.  InP DHBT Amplifier Modules Operating Between 150–300 GHz Using Membrane Technology , 2015, IEEE Transactions on Microwave Theory and Techniques.

[9]  Goutam Chattopadhyay,et al.  A 500–750 GHz RF MEMS Waveguide Switch , 2017, IEEE Transactions on Terahertz Science and Technology.

[10]  M. Urteaga,et al.  250 nm InP DHBT monolithic amplifiers with 4.8 dB gain at 324 GHz , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[11]  K. Sarabandi,et al.  2.5D Micromachined 240 GHz Cavity-Backed Coplanar Waveguide to Rectangular Waveguide Transition , 2012, IEEE Transactions on Terahertz Science and Technology.

[12]  Yi Wang,et al.  WR-3 Band Waveguides and Filters Fabricated Using SU8 Photoresist Micromachining Technology , 2012, IEEE Transactions on Terahertz Science and Technology.