Fractional Fourier transform: applications in information optics

The fractional Fourier transform (FRT), which is a generalization of the well-known ordinary Fourier transform, is being increasingly used in many applications of optics. The FRT is richer in theory and more flexible in applications and at the same time not more costly in implementation. Pattern recognition, one of the widely pursued application areas in the domain of optical information processing, has benefited immensely with the use of FRT in optical correlators. Similarly optoelectronic encryption and decryption techniques have derived considerable strength from the use of FRT. The present paper reviews the recent investigations in the above-mentioned areas with special reference to the work carried out by the Photonics Group, ITT Delhi.

[1]  A. Lohmann A fake zoom lens for fractional Fourier experiments , 1995 .

[2]  S Liu,et al.  Optical image encryption based on multifractional Fourier transforms. , 2000, Optics letters.

[3]  Bahram Javidi,et al.  Fully phase encrypted image processor , 1999 .

[4]  L. B. Almeida Product and Convolution Theorems for the Fractional Fourier Transform , 1997, IEEE Signal Processing Letters.

[5]  Kehar Singh,et al.  Optical encryption using quadratic phase systems , 2001 .

[6]  D Mendlovic,et al.  Fractional Fourier transform: simulations and experimental results. , 1995, Applied optics.

[7]  Performing fractional Fourier transform by one Fresnel diffraction and one lens , 1997 .

[9]  P C Mogensen,et al.  Phase-only optical encryption. , 2000, Optics letters.

[11]  Li Yu,et al.  Optical image encryption by cascaded fractional Fourier transforms with random phase filtering , 2001 .

[12]  G S Pati,et al.  Nonlinear processing and fractional-order filtering in a joint fractional fourier-transform correlator: performance evaluation in multiobject recognition. , 2001, Applied optics.

[13]  H. Ozaktas,et al.  Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators. , 1994, Optics letters.

[14]  Yan Zhang,et al.  Properties of the fractionalization of a Fourier transform , 1997 .

[15]  Sang-il Jin,et al.  Joint transform correlator with fractional Fourier transform , 2002 .

[16]  L. Z. Cai,et al.  Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system , 2002 .

[17]  J. Hua,et al.  Scaled fractional Fourier transform and its optical implementation. , 1997, Applied optics.

[18]  Gozde Bozdagi Akar,et al.  Digital computation of the fractional Fourier transform , 1996, IEEE Trans. Signal Process..

[19]  E Tajahuerce,et al.  White-light optical implementation of the fractional fourier transform with adjustable order control. , 2000, Applied optics.

[20]  Luiz Goncalves Neto Implementation of image encryption using the phase-contrast technique , 1998, Defense + Commercial Sensing.

[21]  D Mendlovic,et al.  Anamorphic fractional Fourier transform: optical implementation and applications. , 1995, Applied optics.

[22]  M. Fatih Erden,et al.  Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domains , 1998 .

[23]  Haldun M. Ozaktas Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering , 1996 .

[24]  D Mendlovic,et al.  Every Fourier optical system is equivalent to consecutive fractional-Fourier-domain filtering. , 1996, Applied optics.

[25]  R. Dorsch,et al.  Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. , 1996, Applied optics.

[26]  G Unnikrishnan,et al.  Fractional fourier domain encrypted holographic memory by use of an anamorphic optical system. , 2001, Applied optics.

[27]  B Javidi,et al.  Secure optical storage that uses fully phase encryption. , 2000, Applied optics.

[28]  David Mendlovic,et al.  Design of dynamically adjustable anamorphic fractional Fourier transformer , 1997 .

[29]  J. Hua,et al.  Extended fractional Fourier transforms , 1997 .

[30]  Bin Zhang,et al.  Optical systems expressed in terms of fractional Fourier transforms , 1997 .

[31]  Jesper Glueckstad Image-decrypting common path interferometer , 1999, Defense, Security, and Sensing.

[32]  Daniela Dragoman,et al.  Fractional Fourier-related functions , 1996 .

[33]  Haldun M. Ozaktas Applications of the fractional Fourier transform in optics and signal processing: a review , 1996, International Commission for Optics.

[34]  Fractional Fourier analysis of defocused images , 1974 .

[35]  Neng-Chung Hu,et al.  Multiple-target recognition using the discrete rotational Fourier transform , 2001 .

[36]  Tatiana Alieva,et al.  Self-imaging in fractional Fourier transform systems , 1998 .

[37]  Rainer G. Dorsch,et al.  Fractional Fourier transform used for a lens-design problem. , 1995, Applied optics.

[38]  C. Shih Fractionalization of Fourier transform , 1995 .

[39]  John T. Sheridan,et al.  An optical implementation for the estimation of the fractional-Fourier order , 1997 .

[40]  Kehar Singh,et al.  Double random fractional Fourier domain encoding for optical security , 2000 .

[41]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[42]  H. Ozaktas,et al.  Fractional Fourier optics , 1995 .

[43]  S Liu,et al.  Fractional profilometry correlator for three-dimensional object recognition. , 2001, Applied optics.

[44]  D Mendlovic,et al.  Incoherent fractional Fourier transform and its optical implementation. , 1995, Applied optics.

[45]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .