Whole slide imaging for human epidermal growth factor receptor 2 immunohistochemistry interpretation: Accuracy, Precision, and reproducibility studies for digital manual and paired glass slide manual interpretation

Background: The use of digital whole slide imaging for human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) could create improvements in workflow and performance, allowing for central archiving of specimens, distributed and remote interpretation, and the potential for additional computerized automation. Procedures: The accuracy, precision, and reproducibility of manual digital interpretation for HER2 IHC were determined by comparison to manual glass slide interpretation. Inter- and intra-pathologist reproducibility and precision between the glass slide and digital interpretations of HER2 IHC were determined in 5 studies using DAKO HercepTest-stained breast cancer slides with the Philips Digital Pathology System. In 2 inter-method studies, 3 pathologists interpreted glass and digital slides in sequence or in random order with a minimum of 7 days as a washout period. These studies also measured inter-observer reproducibility and precision. Another two studies measured intra-pathologist reproducibility on cases read 10 times by glass and digital methods. One additional study evaluated the effects of adding IHC control slides with each run, using 1 pathologist interpreting glass and digital slides randomized from the sets above along with appropriate controls for each slide in the set. Results: The overall results show that there is no statistical difference between the variance of performance when comparing glass and digital HER2 interpretations; and there were no effects noted when control tissues were evaluated in conjunction with the test slides. Conclusions: The results show that there is an equivalence of result when interpreting HER2 IHC slides in breast cancer by either glass slides or digital images. Digital interpretation can therefore be safely and effectively used for this purpose.