Visual localization using an optimal sampling of bags-of-features with entropy applied to repeatable test methods

This paper investigates the visual Localization of a mobile platform using a new sampling adaptive bag-of-features patches techniques. The method is specifically developed for the navigation of robots. It is based on the idea of an adaptive dense sampling of images using an optimal multilayer Quadtree decomposition of the image driven by the quantity and homogeneity of the information contained within subpatches. Extracted patches will be of different sizes according to the covered zones in the image. Experimental results carried out on real images in the case of a navigation of a mobile robot using an omnidirectional camera are presented. The method of generating maps will be briefly introduced. Large amount of measures in different cases of noise and occlusion will be presented showing the robustness of the method.

[1]  Bastian Leibe,et al.  Interleaved Object Categorization and Segmentation , 2003, BMVC.

[2]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[4]  Gregory Dudek,et al.  Vision-based robot localization without explicit object models , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[5]  Ian Horswill,et al.  Polly: A Vision-Based Artificial Agent , 1993, AAAI.

[6]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[7]  Sebastian Thrun,et al.  Bayesian Landmark Learning for Mobile Robot Localization , 1998, Machine Learning.

[8]  Ben J. A. Kröse,et al.  Probabilistic localization by appearance models and active vision , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[10]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[11]  Gregory D. Hager,et al.  A Color Interest Operator for Landmark-Based Navigation , 1997, AAAI/IAAI.

[12]  Ankur Agarwal,et al.  Hyperfeatures - Multilevel Local Coding for Visual Recognition , 2006, ECCV.

[13]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[15]  J. Gaspar,et al.  Omni-directional vision for robot navigation , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[16]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[17]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[18]  Trevor Darrell,et al.  Efficient image matching with distributions of local invariant features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Yolanda González Cid,et al.  Real-time 3d SLAM with wide-angle vision , 2004 .

[20]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[21]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[23]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Clark F. Olson,et al.  Probabilistic self-localization for mobile robots , 2000, IEEE Trans. Robotics Autom..

[25]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[27]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[29]  Ehud Rivlin,et al.  Localization and Homing Using Combinations of Model Views , 1995, Artif. Intell..

[30]  Gregory Dudek,et al.  Learning visual landmarks for pose estimation , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[31]  Jean-Arcady Meyer,et al.  Map-based navigation in mobile robots: I. A review of localization strategies , 2003, Cognitive Systems Research.

[32]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[33]  Joachim Hertzberg,et al.  Robust localization using context in omnidirectional imaging , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[34]  Roland Siegwart,et al.  Incremental robot mapping with fingerprints of places , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  Eric Krotkov,et al.  Mobile robot localization using a single image , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[36]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[37]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).