Human-centric sensing

The first decade of the century witnessed a proliferation of devices with sensing and communication capabilities in the possession of the average individual. Examples range from camera phones and wireless global positioning system units to sensor-equipped, networked fitness devices and entertainment platforms (such as Wii). Social networking platforms emerged, such as Twitter, that allow sharing information in real time. The unprecedented deployment scale of such sensors and connectivity options ushers in an era of novel data-driven applications that rely on inputs collected by networks of humans or measured by sensors acting on their behalf. These applications will impact domains as diverse as health, transportation, energy, disaster recovery, intelligence and warfare. This paper surveys the important opportunities in human-centric sensing, identifies challenges brought about by such opportunities and describes emerging solutions to these challenges.

[1]  Malik Magdon-Ismail,et al.  Simulating the Diffusion of Information: An Agent-Based Modeling Approach , 2010, Int. J. Agent Technol. Syst..

[2]  Deborah Estrin,et al.  Examining micro-payments for participatory sensing data collections , 2010, UbiComp.

[3]  Deborah Estrin,et al.  Using mobile phones to determine transportation modes , 2010, TOSN.

[4]  Jatinder Pal Singh,et al.  Improving energy efficiency of location sensing on smartphones , 2010, MobiSys '10.

[5]  William A. Wallace,et al.  Communication Dynamics of Blog Networks , 2008, SNAKDD.

[6]  Injong Rhee,et al.  Towards Mobile Phone Localization without War-Driving , 2010, 2010 Proceedings IEEE INFOCOM.

[7]  M. Hansen,et al.  Participatory Sensing , 2019, Internet of Things.

[8]  Deborah Estrin,et al.  Recruitment Framework for Participatory Sensing Data Collections , 2010, Pervasive.

[9]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[10]  Shankar P. Das The nonequilibrium dynamics , 2011 .

[11]  Tarek F. Abdelzaher,et al.  PoolView: stream privacy for grassroots participatory sensing , 2008, SenSys '08.

[12]  Rajmonda Sulo Caceres,et al.  The Impact of Structural Changes on Predictions of Diffusion in Networks , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[13]  Jie Liu,et al.  Enabling energy efficient continuous sensing on mobile phones with LittleRock , 2010, IPSN '10.

[14]  Corinna Cortes,et al.  Computational Methods for Dynamic Graphs , 2003 .

[15]  Noah E. Friedkin,et al.  Social influence and opinions , 1990 .

[16]  Jiawei Han,et al.  The Sparse Regression Cube: A Reliable Modeling Technique for Open Cyber-Physical Systems , 2011, 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems.

[17]  Luc Steels A self-organizing spatial vocabulary , 1995 .

[18]  Deborah Estrin,et al.  Biketastic: sensing and mapping for better biking , 2010, CHI.

[19]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Simon King,et al.  MMM2: mobile media metadata for media sharing , 2005, CHI EA '05.

[21]  Deborah Estrin,et al.  PEIR, the personal environmental impact report, as a platform for participatory sensing systems research , 2009, MobiSys '09.

[22]  Deborah Estrin,et al.  Using Context Annotated Mobility Profiles to Recruit Data Collectors in Participatory Sensing , 2009, LoCA.

[23]  Mark Newman,et al.  Models of the Small World , 2000 .

[24]  Deborah Estrin,et al.  Image browsing, processing, and clustering for participatory sensing: lessons from a DietSense prototype , 2007, EmNets '07.

[25]  Shivakant Mishra,et al.  CenWits: a sensor-based loosely coupled search and rescue system using witnesses , 2005, SenSys '05.

[26]  Tarek F. Abdelzaher,et al.  GreenGPS: a participatory sensing fuel-efficient maps application , 2010, MobiSys '10.

[27]  Suman Nath,et al.  Differentially private aggregation of distributed time-series with transformation and encryption , 2010, SIGMOD Conference.

[28]  D. Watts Networks, Dynamics, and the Small‐World Phenomenon1 , 1999, American Journal of Sociology.

[29]  Kamin Whitehouse,et al.  Protecting your daily in-home activity information from a wireless snooping attack , 2008, UbiComp.

[30]  Marco Janssen,et al.  Diffusion dynamics in small-world networks with heterogeneous consumers , 2007, Comput. Math. Organ. Theory.

[31]  Suman Nath,et al.  Privacy-aware regression modeling of participatory sensing data , 2010, SenSys '10.

[32]  Sibel Adali,et al.  Measuring behavioral trust in social networks , 2010, 2010 IEEE International Conference on Intelligence and Security Informatics.

[33]  John Yen,et al.  Advances in Social Network Mining and Analysis , 2011 .

[34]  S. Moscovici,et al.  Influence of a consistent minority on the responses of a majority in a color perception task. , 1969, Sociometry.

[35]  Emiliano Miluzzo,et al.  The BikeNet mobile sensing system for cyclist experience mapping , 2007, SenSys '07.

[36]  Deborah Estrin,et al.  SensLoc: sensing everyday places and paths using less energy , 2010, SenSys '10.

[37]  Tanya Y. Berger-Wolf,et al.  A framework for analysis of dynamic social networks , 2006, KDD '06.

[38]  Boleslaw K. Szymanski,et al.  The Naming Game in Social Networks : Community Formation and Consensus Engineering , 2009 .

[39]  Suman Nath,et al.  Privacy-Preserving Reconstruction of Multidimensional Data Maps in Vehicular Participatory Sensing , 2010, EWSN.

[40]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[41]  Deborah Estrin,et al.  Improving activity classification for health applications on mobile devices using active and semi-supervised learning , 2010, 2010 4th International Conference on Pervasive Computing Technologies for Healthcare.

[42]  Ramesh Govindan,et al.  Energy-delay tradeoffs in smartphone applications , 2010, MobiSys '10.

[43]  Joongheon Kim,et al.  Energy-efficient rate-adaptive GPS-based positioning for smartphones , 2010, MobiSys '10.

[44]  Boleslaw K. Szymanski,et al.  Social consensus through the influence of committed minorities , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Alex Pentland,et al.  To Signal Is Human , 2010 .

[46]  A. Baronchelli,et al.  Consensus and ordering in language dynamics , 2009, 0901.3844.

[47]  Vikas Kumar,et al.  CrowdSearch: exploiting crowds for accurate real-time image search on mobile phones , 2010, MobiSys '10.

[48]  Gordon Bell,et al.  MyLifeBits: fulfilling the Memex vision , 2002, MULTIMEDIA '02.

[49]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Vittorio Loreto,et al.  Journal of Statistical Mechanics: An IOP and SISSA journal Theory and Experiment Sharp transition towardsshared vocabularies in multi-agent systems , 2006 .

[51]  George Cybenko,et al.  Exploratory community sensing in social networks , 2010, Defense + Commercial Sensing.

[52]  Ashwin Machanavajjhala,et al.  Privacy-Preserving Data Publishing , 2009, Found. Trends Databases.

[53]  Boleslaw K. Szymanski,et al.  Social Influencing and Associated Random Walk Models: Asymptotic Consensus Times on the Complete Graph , 2011, Chaos.

[54]  Vittorio Loreto,et al.  Nonequilibrium dynamics of language games on complex networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[56]  Yang Zhang,et al.  CarTel: a distributed mobile sensor computing system , 2006, SenSys '06.

[57]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[58]  Boleslaw K. Szymanski,et al.  Naming Games in Two-Dimensional and Small-World-Connected Random Geometric Networks , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.