Adaptive boundary element methods with convergence rates
暂无分享,去创建一个
[1] Wolfgang Dahmen,et al. Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..
[2] Carsten Carstensen,et al. Convergence of adaptive boundary element methods , 2012 .
[3] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[4] V. Girault,et al. A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .
[5] Birgit Faermann,et al. Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations , 1998 .
[6] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[7] C. Schwab,et al. Boundary Element Methods , 2010 .
[8] Wolfgang Dahmen,et al. Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..
[9] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[10] B Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .
[11] Doyoon Kim,et al. Trace theorems for Sobolev-Slobodeckij spaces with or without weights , 2007 .
[12] Ricardo H. Nochetto,et al. A posteriori error analysis for a class of integral equations and variational inequalities , 2010, Numerische Mathematik.
[13] Martin Costabel,et al. Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .
[14] Karsten Urban. Adaptive Wavelet Methods , 2008 .
[15] Rob P. Stevenson,et al. Computation of Singular Integral Operators in Wavelet Coordinates , 2005, Computing.
[16] G. Verchota. Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .
[17] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[18] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[19] H. Johnen,et al. On the equivalence of the K-functional and moduli of continuity and some applications , 1976, Constructive Theory of Functions of Several Variables.
[20] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[21] Michael Karkulik,et al. Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods , 2013, Comput. Methods Appl. Math..
[22] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..
[23] Zhonghai Ding,et al. A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .
[24] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[25] Stefan A. Funken,et al. Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D , 2013 .
[26] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[27] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[28] Birgit Faermann,et al. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.
[29] Carsten Carstensen,et al. Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind , 2001 .
[30] Dirk Praetorius,et al. Estimator reduction and convergence of adaptive BEM , 2012, Applied numerical mathematics : transactions of IMACS.
[31] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[32] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[33] Peter Oswald,et al. Multilevel Finite Element Approximation , 1994 .
[34] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[35] Rob Stevenson,et al. On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..
[36] Carsten Carstensen,et al. Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.
[37] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[38] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[39] Carsten Carstensen,et al. Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .
[40] Wolfgang Dahmen,et al. Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method , 2003, Math. Comput..
[41] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[42] Rob Stevenson,et al. Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .
[43] Christoph Ortner,et al. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.
[44] J. Marschall,et al. The trace of Sobolev-Slobodeckij spaces on Lipschitz domains , 1987 .
[45] Reinhold Schneider,et al. Multiskalen- und Wavelet-Matrixkompression , 1998 .
[46] Michael Karkulik,et al. Residual A-Posteriori Error Estimates in BEM : Convergence of h-Adaptive Algorithms , 2011 .
[47] Tsogtgerel Gantumur,et al. An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems , 2008 .
[48] Michael Karkulik,et al. Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..
[49] Mark Ainsworth,et al. The Conditioning of Boundary Element Equations on Locally Refined Meshes and Preconditioning by Diagonal Scaling , 1999 .
[50] Stefan A. Funken,et al. Energy norm based a posteriori error estimation for boundary element methods in two dimensions , 2009 .