The influence of three-dimensional effects on the performance of U-type oscillating water column wave energy harvesters

This paper studies the dynamics and power extraction of a U-Oscillating Water Column (U-OWC) device. A three-dimensional hydrodynamic model, based on the boundary integral equations method, is implemented. The U-OWC width and wave direction are analysed and compared with a two-dimensional model based on the eigen-function expansion method. Results show that as the device width increases, the power extraction per unit width tends to the two-dimensional value. For small converter widths, which are expected to be implemented in practical applications, three-dimensional effects are relevant and provide a systematic improvement in power output per unit width, due to their influence in the device hydrodynamic characteristics.

[1]  Paolo Boccotti,et al.  Caisson breakwaters embodying an OWC with a small opening—Part I: Theory , 2007 .

[2]  Dick K. P. Yue,et al.  Theory and Applications of Ocean Surface Waves: Part 1: Linear AspectsPart 2: Nonlinear Aspects , 2005 .

[3]  Y. M. C. Delaure,et al.  An assessment of 3D boundary element methods for response prediction of generic OWCs , 2000 .

[4]  João C.C. Henriques,et al.  Dynamics and optimization of the OWC spar buoy wave energy converter , 2012 .

[5]  Luís M.C. Gato,et al.  The energy conversion performance of several types of Wells turbine designs , 1997 .

[6]  Finn Gunnar Nielsen,et al.  Wave interactions with an oscillating water column , 1996 .

[7]  Paolo Boccotti,et al.  On a new wave energy absorber , 2003 .

[8]  Felice Arena,et al.  A U-OWC wave energy converter in the Mediterranean Sea: Preliminary results on the monitoring system of the first prototype , 2015 .

[9]  Alain H. Clément,et al.  Numerical modelling of OWC-shoreline devices including the effect of surrounding coastline and non-flat bottom , 2001 .

[10]  C. Guedes Soares,et al.  Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom , 2015 .

[11]  J. N. Newman,et al.  Computation Of Wave Effects Using ThePanel Method , 2005 .

[12]  Arun Kamath,et al.  COMPARISON OF 2D AND 3D SIMULATIONS OF AN OWC DEVICE IN DIFFERENT CONFIGURATIONS , 2014 .

[13]  Arun Kamath,et al.  Numerical investigations of the hydrodynamics of an oscillating water column device , 2015 .

[14]  António Sarmento,et al.  Wave generation by an oscillating surface-pressure and its application in wave-energy extraction , 1985, Journal of Fluid Mechanics.

[15]  A. Falcão Control of an oscillating-water-column wave power plant for maximum energy production , 2002 .

[16]  Anthony Lewis,et al.  3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods , 2003 .

[17]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[18]  Bin Teng,et al.  Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method) , 2015 .

[19]  G. Delhommeau,et al.  A 3D Boundary Element Code For the Analysis of OWC Wave-Power Plants , 1999 .

[20]  E. R. Jefferys Simulation of wave power devices , 1984 .

[21]  Felice Arena,et al.  Performance optimization of a U-Oscillating-Water-Column wave energy harvester , 2016 .

[22]  Felice Arena,et al.  On Design and Building of a U-OWC Wave Energy Converter in the Mediterranean Sea: A Case Study , 2013 .

[23]  Paulo Roberto de Freitas Teixeira,et al.  Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations , 2013 .

[24]  Gregorio Iglesias,et al.  Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model , 2014 .

[25]  W. Cummins THE IMPULSE RESPONSE FUNCTION AND SHIP MOTIONS , 2010 .

[26]  W. E. Cummins,et al.  The Impulse Response Function and Ship Motion , 1962 .

[27]  H. Barlow Surface Waves , 1958, Proceedings of the IRE.

[28]  Paolo Boccotti,et al.  Design of breakwater for conversion of wave energy into electrical energy , 2012 .

[29]  E. Isaacson,et al.  Numerical Analysis for Applied Science , 1997 .

[30]  Felice Arena,et al.  Analytical modelling of an U-Oscillating Water Column and performance in random waves , 2013 .

[31]  C. Linton,et al.  Handbook of Mathematical Techniques for Wave/Structure Interactions , 2001 .

[32]  G. Macfarlane,et al.  Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column-wave energy converter , 2017 .

[33]  João C.C. Henriques,et al.  Oscillating-water-column wave energy converters and air turbines: A review , 2016 .

[34]  Kim Nielsen,et al.  Hydrodynamic analysis of oscillating water column wave energy devices , 2015, Journal of Ocean Engineering and Marine Energy.

[35]  Wilfred D. Iwan,et al.  Harmonic Analysis of Dynamic Systems With Nonsymmetric Nonlinearities , 1979 .

[36]  Paulo Alexandre Justino,et al.  OWC wave energy devices with air flow control , 1999 .

[37]  João C.C. Henriques,et al.  Model-prototype similarity of oscillating-water-column wave energy converters , 2014 .

[38]  Felice Arena,et al.  Caisson breakwaters embodying an OWC with a small opening—Part II: A small-scale field experiment , 2007 .

[39]  Qingping Zou,et al.  Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device , 2012 .

[40]  H. Oumeraci,et al.  Numerical Modelling of Fixed Oscillating Water Column Wave Energy Conversion Devices: Toward Geometry Hydraulic Optimization , 2015 .

[41]  C. Guedes Soares,et al.  Stepped sea bottom effects on the efficiency of nearshore oscillating water column device , 2013 .

[42]  D. J. Wang,et al.  Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices , 2002 .