Reaching the superlinear convergence phase of the CG method

The rate of convergence of the conjugate gradient method takes place in essentially three phases, with respectively a sublinear, a linear and a superlinear rate. The paper examines when the superlinear phase is reached. To do this, two methods are used. One is based on the K -condition number, thereby separating the eigenvalues in three sets: small and large outliers and intermediate eigenvalues. The other is based on annihilating polynomials for the eigenvalues and, assuming various analytical distributions of them, thereby using certain refined estimates. The results are illustrated for some typical distributions of eigenvalues and with some numerical tests.

[1]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[2]  O. Axelsson Iterative solution methods , 1995 .

[3]  O. Axelsson Solution of linear systems of equations: Iterative methods , 1977 .

[4]  Owe Axelsson,et al.  Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators , 2004, Numerische Mathematik.

[5]  Owe Axelsson,et al.  On the sublinear and superlinear rate of convergence of conjugate gradient methods , 2000, Numerical Algorithms.

[6]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[7]  Owe Axelsson,et al.  Equivalent operator preconditioning for elliptic problems , 2009, Numerical Algorithms.

[8]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[9]  A. Greenbaum Comparison of splittings used with the conjugate gradient algorithm , 1979 .

[10]  R. Winther Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .

[11]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[12]  O. Axelsson,et al.  ON THE RATE OF CONVERGENCE OF THE CONJUGATE GRADIENT METHOD FOR LINEAR OPERATORS IN HILBERT SPACE , 2002 .

[13]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[14]  O. Axelsson,et al.  On the eigenvalue distribution of a class of preconditioning methods , 1986 .

[15]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[16]  Igor E. Kaporin,et al.  New convergence results and preconditioning strategies for the conjugate gradient method , 1994, Numer. Linear Algebra Appl..

[17]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[18]  V. A. Barker,et al.  Finite element solution of boundary value problems , 1984 .

[19]  Owe Axelsson,et al.  Mesh Independent Superlinear PCG Rates Via Compact-Equivalent Operators , 2007, SIAM J. Numer. Anal..