Silicon nitride-based Kerr frequency combs and applications in metrology

Abstract. Kerr frequency combs have been attracting significant interest due to their rich physics and broad applications in metrology, microwave photonics, and telecommunications. In this review, we first introduce the fundamental physics, master equations, simulation methods, and dynamic process of Kerr frequency combs. We then analyze the most promising material platform for realizing Kerr frequency combs—silicon nitride on insulator (SNOI) in comparison with other material platforms. Moreover, we discuss the fabrication methods, process optimization as well as tuning and measurement schemes of SNOI-based Kerr frequency combs. Furthermore, we highlight several emerging applications of Kerr frequency combs in metrology, including spectroscopy, ranging, and timing. Finally, we summarize this review and envision the future development of chip-scale Kerr frequency combs from the viewpoint of theory, material platforms, and tuning methods.

[1]  Wei Zhao,et al.  Scanning dual-microcomb spectroscopy , 2022, Science China Physics, Mechanics & Astronomy.

[2]  A. Danner,et al.  Advances in lithium niobate photonics: development status and perspectives , 2022 .

[3]  S. Fathpour,et al.  Applications of thin-film lithium niobate in nonlinear integrated photonics , 2022, Advanced Photonics.

[4]  B. Bai,et al.  Microcomb-driven silicon photonic systems , 2022, Nature.

[5]  Maxim Karpov,et al.  Dual chirped microcomb based parallel ranging at megapixel-line rates , 2021, Nature Communications.

[6]  Anton Lukashchuk,et al.  Chaotic microcomb-based parallel ranging , 2021, Nature Photonics.

[7]  K. Vahala,et al.  Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy , 2021, Nature Communications.

[8]  M. Lipson,et al.  Methods to achieve ultra-high quality factor silicon nitride resonators , 2021, APL Photonics.

[9]  J. Bowers,et al.  Laser soliton microcombs heterogeneously integrated on silicon , 2021, Science.

[10]  P. Rakich,et al.  422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth , 2021, Nature Communications.

[11]  P. Andrekson,et al.  Dissipative solitons in photonic molecules , 2021, Nature Photonics.

[12]  T. Kippenberg,et al.  Dynamics of soliton self-injection locking in optical microresonators , 2021, Nature communications.

[13]  K. Vahala,et al.  Dirac solitons in optical microresonators , 2020, 2021 Conference on Lasers and Electro-Optics (CLEO).

[14]  N. J. Engelsen,et al.  High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits , 2020, Nature Communications.

[15]  Xuan Li,et al.  Parallel convolutional processing using an integrated photonic tensor core , 2021, Nature.

[16]  Yang Li,et al.  Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR. , 2020, Optics express.

[17]  Carlos Alonso-Ramos,et al.  Stretching the spectra of Kerr frequency combs with self-adaptive boundary silicon waveguides , 2020 .

[18]  Wenfu Zhang,et al.  Advances in soliton microcomb generation , 2020, Advanced Photonics.

[19]  A. K. Vinod,et al.  Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs , 2020, Light: Science & Applications.

[20]  Wenxue Li,et al.  Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers , 2020 .

[21]  Shuangyou Zhang,et al.  Spectral extension and synchronization of microcombs in a single microresonator , 2020, Nature Communications.

[22]  Wei Zhao,et al.  Quantum Key Distribution with On‐Chip Dissipative Kerr Soliton , 2020, Laser & Photonics Reviews.

[23]  Erwan Lucas,et al.  Massively parallel coherent laser ranging using a soliton microcomb , 2019, Nature.

[24]  John E. Bowers,et al.  Integrated turnkey soliton microcombs , 2019, Nature.

[25]  Q. Lin,et al.  Perfect Soliton Crystals on Demand , 2019, 2020 Conference on Lasers and Electro-Optics (CLEO).

[26]  A. Boes,et al.  Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators , 2019, Nature Communications.

[27]  T. Kippenberg,et al.  Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator , 2019, Nature Communications.

[28]  S. Papp,et al.  Thermal decoherence and laser cooling of Kerr microresonator solitons , 2019, Nature Photonics.

[29]  C. Monat,et al.  Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators. , 2019, Optics express.

[30]  P. Andrekson,et al.  High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. , 2019, Optics express.

[31]  T. Kippenberg,et al.  Thermally stable access to microresonator solitons via slow pump modulation. , 2019, Optics letters.

[32]  T. Fortier,et al.  20 years of developments in optical frequency comb technology and applications , 2019, Communications Physics.

[33]  X. Shang,et al.  Terahertz wave generation using a soliton microcomb. , 2019, Optics express.

[34]  K. Srinivasan,et al.  Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. , 2019, Optics letters.

[35]  T. C. Briles,et al.  Kerr Solitons with Tantala Ring Resonators , 2019, Nonlinear Optics (NLO).

[36]  H. Tang,et al.  Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. , 2019, Optics letters.

[37]  K. Qiu,et al.  Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities , 2019, Light: Science & Applications.

[38]  T. C. Briles,et al.  Architecture for the photonic integration of an optical atomic clock , 2019, Optica.

[39]  A. Matsko,et al.  Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation. , 2019, Optics letters.

[40]  Christian Reimer,et al.  Quantum optical microcombs , 2019, Nature Photonics.

[41]  Qiang Lin,et al.  A self-starting bi-chromatic LiNbO3 soliton microcomb , 2018, 1812.09610.

[42]  K. Srinivasan,et al.  Terahertz-Rate Kerr-Microresonator Optical Clockwork , 2018, Physical Review X.

[43]  Wei Zhao,et al.  Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator , 2018, AIP Advances.

[44]  Jonathan M. Silver,et al.  Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser , 2018, Optica.

[45]  M. Lončar,et al.  Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation , 2018, Nature Communications.

[46]  Scott A. Diddams,et al.  Searching for Exoplanets Using a Microresonator Astrocomb , 2018, Nature Photonics.

[47]  T. Kippenberg,et al.  Dynamics of soliton crystals in optical microresonators , 2017, Nature Physics.

[48]  T. J. Kippenberg,et al.  From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Xiaoping Zheng,et al.  Microresonator Frequency Combs for Integrated Microwave Photonics , 2018, IEEE Photonics Technology Letters.

[50]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[51]  M. Gorodetsky,et al.  Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes , 2018, Nature Photonics.

[52]  T. Kippenberg,et al.  Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins , 2018, Optica.

[53]  K. Vahala,et al.  Kerr-microresonator solitons from a chirped background , 2018, Optica.

[54]  Tobias J. Kippenberg,et al.  Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  B. Ilic,et al.  Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. , 2018, Optics letters.

[56]  Deming Liu,et al.  Deterministic Single Soliton Formation and Manipulation in Anomalous Dispersion Microresonators via Parametric Seeding , 2018, IEEE Photonics Journal.

[57]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[58]  Miles H. Anderson,et al.  Gallium Phosphide Microresonator Frequency Combs , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[59]  Yunjiang Rao,et al.  Gate-tunable frequency combs in graphene–nitride microresonators , 2018, Nature.

[60]  Roberto Morandotti,et al.  RF Photonics: An Optical Microcombs’ Perspective , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  Roberto Morandotti,et al.  Advanced RF and microwave functions based on an integrated optical frequency comb source. , 2018, Optics express.

[62]  Kyunghun Han,et al.  50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. , 2018, Optics express.

[63]  P. Andrekson,et al.  High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators , 2018, Nature Communications.

[64]  Miles H. Anderson,et al.  A microphotonic astrocomb , 2017, Nature Photonics.

[65]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[66]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[67]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[68]  Michael L. Gorodetsky,et al.  Self-injection locking of a laser diode to a high-Q WGM microresonator , 2017 .

[69]  Roberto Morandotti,et al.  Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source , 2017 .

[70]  Andrea M. Armani,et al.  On-Chip Ultra-High-Q Silicon Oxynitride Optical Resonators , 2017 .

[71]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[72]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[73]  Michael L. Gorodetsky,et al.  Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[74]  Xiaoping Zheng,et al.  Second-harmonic induced soliton drifting and annihilation in microresonators , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[75]  Massimo Brambilla,et al.  The LLE, pattern formation and a novel coherent source , 2017 .

[76]  R. Baets,et al.  Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits , 2017, Journal of Lightwave Technology.

[77]  P. Andrekson,et al.  Long-haul coherent communications using microresonator-based frequency combs. , 2017, Optics express.

[78]  Erwan Lucas,et al.  Octave-spanning dissipative Kerr soliton frequency combs in Si 3 N 4 microresonators , 2017, 1701.08594.

[79]  D. T. H. Tan,et al.  Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge , 2017, Nature Communications.

[80]  Qing Li,et al.  Stably accessing octave-spanning microresonator frequency combs in the soliton regime. , 2016, Optica.

[81]  Xinbai Li,et al.  Single-mode dispersive waves and soliton microcomb dynamics , 2016, Nature Communications.

[82]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[83]  Steven A. Miller,et al.  Breather soliton dynamics in microresonators , 2016, Nature Communications.

[84]  Tobias J. Kippenberg,et al.  Coupling ideality of integrated planar high-Q microresonators , 2016, 1608.06607.

[85]  X. Yi Physics and Applications of Microresonator Solitons and Electro-optic Frequency Combs , 2017 .

[86]  A. Matsko,et al.  High-contrast Kerr Frequency Combs , 2016, 1612.00820.

[87]  S. Diddams,et al.  Soliton crystals in Kerr resonators , 2016, 1610.00080.

[88]  B. Eggleton,et al.  CMOS-compatible photonic devices for single-photon generation , 2016 .

[89]  E. Semenova,et al.  Efficient frequency comb generation in AlGaAs-on-insulator , 2016 .

[90]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[91]  T. Kippenberg,et al.  Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. , 2016, Optics express.

[92]  K. Vahala,et al.  Phase-coherent microwave-to-optical link with a self-referenced microcomb , 2016, Nature Photonics.

[93]  K. Vahala,et al.  Ultra-high-q silica-on-silicon ridge-ring-resonator with an integrated silicon nitride waveguide , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[94]  Zhe Kang,et al.  Modeling Frequency Comb Sources , 2016 .

[95]  M. Gorodetsky,et al.  Kerr frequency comb and brillouin lasing in BaF2 whispering gallery mode resonator , 2016, International Conference Laser Optics.

[96]  Roberto Morandotti,et al.  Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs , 2016 .

[97]  Steven A. Miller,et al.  Thermally controlled comb generation and soliton modelocking in microresonators. , 2016, Optics letters.

[98]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[99]  E. Knobloch,et al.  Origin and stability of dark pulse Kerr combs in normal dispersion resonators. , 2016, Optics letters.

[100]  P. Grelu Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers , 2016 .

[101]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[102]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[103]  T. Kippenberg,et al.  Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics , 2015, 1511.05716.

[104]  Jörgen Bengtsson,et al.  Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. , 2015, Optics express.

[105]  Roberto Morandotti,et al.  Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. , 2015, Optics express.

[106]  Laurent Larger,et al.  Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor. , 2015, Optics letters.

[107]  T. Aoki,et al.  Time-bin entangled photon pair generation from Si micro-ring resonator. , 2015, Optics express.

[108]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[109]  T. Kippenberg,et al.  Counting the Cycles of Light using a Self-Referenced Optical Microresonator , 2014, 1411.1354.

[110]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[111]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[112]  Yan Li,et al.  Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. , 2014, Optics express.

[113]  Roberto Morandotti,et al.  Integrated frequency comb source of heralded single photons. , 2014, Optics express.

[114]  M. Qi,et al.  Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring , 2014, Journal of Lightwave Technology.

[115]  M. Gorodetsky,et al.  Mode spectrum and temporal soliton formation in optical microresonators. , 2013, Physical review letters.

[116]  Yanne K. Chembo,et al.  Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes , 2013, 1308.2542.

[117]  S. Wabnitz,et al.  On the numerical simulation of Kerr frequency combs using coupled mode equations , 2013, 1307.3428.

[118]  M. Lauermann,et al.  Coherent terabit communications with microresonator Kerr frequency combs , 2013, Nature Photonics.

[119]  T. Hänsch,et al.  Adaptive real-time dual-comb spectroscopy , 2012, Nature Communications.

[120]  Andrey B. Matsko,et al.  Theory of coupled optoelectronic microwave oscillator II: phase noise , 2013 .

[121]  C. Xiong,et al.  Optical frequency comb generation from aluminum nitride microring resonator. , 2013, Optics letters.

[122]  K. Vahala,et al.  Microwave synthesizer using an on-chip Brillouin oscillator , 2013, Nature Communications.

[123]  M. Lipson,et al.  Overcoming SiN film stress limitations for high quality factor ring resonators , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[124]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[125]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[126]  C. Menyuk,et al.  Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators , 2012, 1210.8210.

[127]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[128]  M. Lipson,et al.  Ultrabroadband supercontinuum generation in a CMOS-compatible platform. , 2012, Optics letters.

[129]  S. Ko,et al.  Patterning by controlled cracking , 2012, Nature.

[130]  N. Yu,et al.  Frequency comb from a microresonator with engineered spectrum. , 2012, Optics express.

[131]  Jing Li,et al.  Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides , 2011 .

[132]  Ran Zhang,et al.  Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. , 2011, Optics letters.

[133]  A. Matsko,et al.  Mode-locked Kerr frequency combs. , 2011, Optics letters.

[134]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[135]  A. Weiner,et al.  Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[136]  K. Minoshima,et al.  Terahertz Frequency Metrology Based on Frequency Comb , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[137]  N. Yu,et al.  Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators , 2010 .

[138]  A. A. Savchenkov,et al.  High performance, miniature hyper-parametric microwave photonic oscillator , 2010, 2010 IEEE International Frequency Control Symposium.

[139]  Yanne K Chembo,et al.  Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. , 2010, Physical review letters.

[140]  A. Bishop,et al.  Nonlinear Schrödinger equation with spatiotemporal perturbations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[141]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[142]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[143]  Roberto Morandotti,et al.  Nonlinear Optics in Doped Silica Glass Integrated Waveguide Structures , 2008, 2103.00351.

[144]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[145]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[146]  Lute Maleki,et al.  Optical resonators with ten million finesse. , 2007, Optics express.

[147]  Lute Maleki,et al.  On the fundamental limits of Q factor of crystalline dielectric resonators. , 2007, Optics express.

[148]  Vladimir S. Ilchenko,et al.  Mode filtering in optical whispering gallery resonators , 2005 .

[149]  Vladimir S. Ilchenko,et al.  Kilohertz optical resonances in dielectric crystal cavities , 2004 .

[150]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[151]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[152]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[153]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[154]  Lute Maleki,et al.  Novel whispering-gallery resonators for lasers, modulators, and sensors , 2001, SPIE LASE.

[155]  X. Steve Yao,et al.  Microsphere integration in active and passive photonics devices , 2000, LASE.

[156]  I. V. Barashenkov,et al.  Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[157]  Marc Haelterman,et al.  Dissipative modulation instability in a nonlinear dispersive ring cavity , 1992 .

[158]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[159]  Diana Anderson,et al.  Variational approach to nonlinear pulse propagation in optical fibers , 1983 .

[160]  J. Bard,et al.  A model for generating aspects of zebra and other mammalian coat patterns. , 1981, Journal of theoretical biology.

[161]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[162]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.