Towards the development of MoS2/c-Si heterojunction photovoltaics

Silicon-based heterojunction (SHJ) solar cells demonstrate high efficiencies over their homojunction counterparts, revealing the potential of such technologies. We present here the first steps towards the development of molybdenum disulfide (MoS2)/c-silicon heterojunction solar cells, consisting of a preliminary study of the MoS2 material and numerical device simulations of MoS2/Si heterojunction solar cells, using SILVACO ATLAS. Through the optical and structural characterization of MoS2/SiO2/Si samples, we found a significant sensitivity of the MoS2 to ambient oxidation. Optical ellipsometry showed a bandgap of 1.87 eV for a 7 monolayer thick MoS2 sample, suitable for the targeted application. Finally, we briefly introduce a device simulation and show that the MoS2/Si heterojunction could lead to a gain in quantum efficiency, especially in the region with short wavelengths, compared with a standard a-Si/c-Si solar cell.

[1]  Wanbing Lu,et al.  Boosting the photovoltaic performance of MoS2/Si heterojunction solar cells with thiourea-doped MoS2 films , 2022, Micro and Nanostructures.

[2]  V. Volkov,et al.  Broadband optical properties of monolayer and bulk MoS2 , 2020, npj 2D Materials and Applications.

[3]  G. Leichtfried,et al.  Molybdenum and Molybdenum Compounds , 2020, Ullmann's Encyclopedia of Industrial Chemistry.

[4]  C. Lorentz,et al.  Oxidation of Nanodispersed MoS2 in Ambient Air: The Products and the Mechanistic Steps , 2019, The Journal of Physical Chemistry C.

[5]  Wei Yu,et al.  Large area MoS2/Si heterojunction-based solar cell through sol-gel method , 2019, Materials Letters.

[6]  E. List‐Kratochvil,et al.  Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates , 2018 .

[7]  M. Otyepka,et al.  Is Single Layer MoS2 Stable in the Air? , 2017, Chemistry.

[8]  Samaresh Das,et al.  High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors , 2017, Scientific Reports.

[9]  Rishi Maiti,et al.  Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices , 2016, Scientific Reports.

[10]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[11]  G. Kioseoglou,et al.  MoS2 nanostructures: Semiconductors with metallic edges , 2014 .

[12]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[13]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[14]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[15]  Kostya S. Novoselov,et al.  Two-dimensional crystals: Beyond graphene , 2011 .

[16]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[18]  B. L. Evans,et al.  The Band Edge Excitons in 2HMoS2 , 1976 .