Germanium tin: silicon photonics toward the mid-infrared

Germanium tin (GeSn) is a group IV semiconductor with a direct band-to-band transition below 0.8 eV. Nonequilibrium GeSn alloys up to 20% Sn content were realized with low temperature (160°C) molecular beam epitaxy. Photodetectors and light emitting diodes (LEDs) were realized from in situ doped pin junctions in GeSn on Ge virtual substrates. The detection wavelength for infrared radiation was extended to 2 μm with clear potential for further extension into the mid-infrared. GeSn LEDs with Sn content of up to 4% exhibit light emission from the direct band transition, although GeSn with low Sn content is an indirect semiconductor. The photon emission energies span the region between 0.81 and 0.65 eV. Optical characterization techniques such as ellipsometry, in situ reflectometry, and Raman spectroscopy were used to monitor the Sn incorporation in GeSn epitaxy.

[1]  Liying Jiang,et al.  Direct versus indirect optical recombination in Ge films grown on Si substrates , 2011, 1106.3300.

[2]  V. D'costa,et al.  Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands , 2009 .

[3]  K. Yu,et al.  Band anticrossing in highly mismatched Sn x Ge 1-x semiconducting alloys , 2008 .

[4]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[5]  M. Oehme,et al.  ABRUPT BORON PROFILES BY SILICON-MBE , 2002 .

[6]  Franz–Keldysh effect of germanium-on-silicon p–i–n diodes within a wide temperature range , 2012 .

[7]  G. Abstreiter,et al.  MBE growth of ternary SnGeSiGe superlattices , 1995 .

[8]  E. Kasper Prospects and challenges of silicon/germanium on-chip optoelectronics , 2010 .

[9]  J. Angilello,et al.  Properties of diamond structure SnGe films grown by molecular beam epitaxy , 1990 .

[10]  V. D'costa,et al.  Low temperature chemical vapor deposition of Si-based compounds via SiH3SiH2SiH3: Metastable SiSn∕GeSn∕Si(100) heteroepitaxial structures , 2006 .

[11]  John Kouvetakis,et al.  New classes of Si-based photonic materials and device architectures via designer molecular routes , 2007 .

[12]  J. Reno,et al.  Effect of growth conditions on the stability of α‐Sn grown on CdTe by molecular beam epitaxy , 1989 .

[13]  T. Kamins,et al.  Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy , 2012 .

[14]  H. Atwater,et al.  SOLID PHASE EPITAXY OF DIAMOND CUBIC SNXGE1-X ALLOYS , 1996 .

[15]  H. Seo,et al.  Sn-mediated Ge∕Ge(001) growth by low-temperature molecular-beam epitaxy: Surface smoothening and enhanced epitaxial thickness , 2005 .

[16]  J. Schulze,et al.  Room-Temperature Electroluminescence From GeSn Light-Emitting Pin Diodes on Si , 2011, IEEE Photonics Technology Letters.

[17]  E. Kasper,et al.  Forward‐bias characteristics of Si bipolar junctions grown by molecular beam epitaxy at low temperatures , 1993 .

[18]  Jurgen Michel,et al.  Ge-on-Si optoelectronics , 2012 .

[19]  S. Iyer,et al.  Molecular beam epitaxy of metastable, diamond structure SnxGe1−x alloys , 1989 .

[20]  G. Abstreiter,et al.  Single‐crystal Sn/Ge superlattices on Ge substrates: Growth and structural properties , 1990 .

[21]  H. Gossmann Determination of critical layer thicknesses in IV‐IV‐alloy systems using reflection high energy electron diffraction intensity oscillations: Ge(100)/GexSn1−x , 1990 .

[22]  Jean-Marc Fédéli,et al.  40 Gb/s low-loss self-aligned silicon optical modulator , 2013, Photonics West - Optoelectronic Materials and Devices.

[23]  A. Kortan,et al.  Structure and stability of metastable α‐Sn , 1989 .

[24]  V. D'costa,et al.  Molecular approaches to p- and n-nanoscale doping of Ge1−ySny semiconductors: Structural, electrical and transport properties , 2009 .

[25]  J. Werner,et al.  Growth of silicon based germanium tin alloys , 2012 .

[26]  Stefan Zollner,et al.  Optical critical points of thin-film Ge 1-y Sn y alloys: A comparative Ge 1-y Sn y /Ge 1-x Si x study , 2006 .

[27]  R Loo,et al.  GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. , 2012, Optics express.

[28]  A. Kortan,et al.  Epitaxial growth of metastable SnGe alloys , 1989 .

[29]  Akira Sakai,et al.  Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates , 2006 .

[30]  Erich Kasper,et al.  Light from germanium tin heterostructures on silicon , 2013, Photonics West - Optoelectronic Materials and Devices.

[31]  Stefan Zollner,et al.  Optical constants and interband transitions of Ge1−xSnx alloys (x<0.2) grown on Si by UHV-CVD , 2004 .

[32]  O. Nakatsuka,et al.  Scanning tunneling microscopy observation of initial growth of Sn and Ge1−xSnx layers on Ge(0 0 1) substrates , 2008 .

[33]  Richard A. Soref,et al.  Group IV photonics for the mid infrared , 2013, Photonics West - Optoelectronic Materials and Devices.

[34]  I. M. Young,et al.  The growth of metastable, heteroepitaxial films of α-Sn by metal beam epitaxy , 1981 .

[35]  P. M. Raccah,et al.  Growth of single-crystal metastable Ge1-xSnx alloys on Ge(100) and GaAs(100) substrates , 1987 .

[36]  M. Berroth,et al.  Ge-on-Si p-i-n Photodiodes With a 3-dB Bandwidth of 49 GHz , 2009, IEEE Photonics Technology Letters.

[37]  J. Schulze,et al.  Invited) GeSn Photodetection and Electroluminescence Devices on Si , 2013 .