A mesh-free convex approximation scheme for Kohn-Sham density functional theory

Density functional theory developed by Hohenberg, Kohn and Sham is a widely accepted, reliable ab initio method. We present a non-periodic, real space, mesh-free convex approximation scheme for Kohn-Sham density functional theory. We rewrite the original variational problem as a saddle point problem and discretize it using basis functions which form the Pareto optimum between competing objectives of maximizing entropy and minimizing the total width of the approximation scheme. We show the utility of the approximation scheme in performing both all-electron and pseudopotential calculations, the results of which are in good agreement with literature.

[1]  MacLaren,et al.  Dominant density parameters and local pseudopotentials for simple metals. , 1995, Physical Review B (Condensed Matter).

[2]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[5]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[6]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[7]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[8]  M. Platt,et al.  Atoms , 2009, Archives of Disease in Childhood.

[9]  Magdalena Ortiz,et al.  Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods , 2006 .

[10]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[11]  P. Brown A local convergence theory for combined inexact-Newton/finite-difference projection methods , 1987 .

[12]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[13]  Sohrab Ismail-Beigi,et al.  New algebraic formulation of density functional calculation , 2000 .

[14]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[15]  Mark D. Stiles,et al.  LOCAL-DENSITY-FUNCTIONAL CALCULATIONS OF THE ENERGY OF ATOMS , 1997 .

[16]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[17]  D. Langreth,et al.  Beyond the local-density approximation in calculations of ground-state electronic properties , 1983 .

[18]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[19]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[20]  Ville Havu,et al.  All-electron density functional theory and time-dependent density functional theory with high-order finite elements. , 2009, The Journal of chemical physics.

[21]  Cooper,et al.  Synthesis of band and model Hamiltonian theory for hybridizing cerium systems. , 1987, Physical review. B, Condensed matter.

[22]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[23]  Rabe,et al.  Optimized pseudopotentials. , 1990, Physical review. B, Condensed matter.

[24]  Rabe,et al.  Erratum: Optimized pseudopotentials , 1991, Physical review. B, Condensed matter.

[25]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[26]  Michael Ortiz,et al.  Smooth, second order, non‐negative meshfree approximants selected by maximum entropy , 2009 .

[27]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[28]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[29]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[30]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[31]  A. Pritsker,et al.  Smooth , 1974 .

[32]  C. Y. Fong,et al.  Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach , 1999, cond-mat/9903313.

[33]  Marino Arroyo,et al.  On the optimum support size in meshfree methods: A variational adaptivity approach with maximum‐entropy approximants , 2010 .

[34]  M. Ortiz,et al.  Non-periodic finite-element formulation of Kohn–Sham density functional theory , 2010 .

[35]  M. Finnis,et al.  Interatomic Forces in Condensed Matter , 2003 .

[36]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[37]  Lihua Shen,et al.  Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh , 2008 .

[38]  Eiji Tsuchida,et al.  Ab initio molecular-dynamics study of liquid formamide. , 2004, The Journal of chemical physics.

[39]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[40]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[41]  Eberhard Engel,et al.  Role of the core-valence interaction for pseudopotential calculations with exact exchange , 2001 .

[42]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[43]  Fernando Nogueira,et al.  Transferability of a local pseudopotential based on solid-state electron density , 1996 .

[44]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[45]  David R. Bowler,et al.  Recent progress with large‐scale ab initio calculations: the CONQUEST code , 2006 .

[46]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[47]  J. Pople,et al.  Self‐Consistent Molecular Orbital Methods. XI. Molecular Orbital Theory of NMR Chemical Shifts , 1971 .

[48]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[49]  Fernando Nogueira,et al.  Evanescent core pseudopotential: Applications to surfaces and clusters , 1996 .

[50]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .