Corrosion resistance of cerium‐based chemical conversion coatings on AA5083 aluminium alloy

In this paper the effect of several parameters, such as temperature, time of immersion, cerium ions and hydrogen peroxide concentration, pH of the conversion solution, on the composition and morphology of the conversion layer are investigated as well as on its corrosion resistance in chloride environments. The cerium-based chemical conversion coatings ennobles the corrosion potential and inhibits both the cathodic and anodic reactions rate. Using a cerium (III) chloride solution a not homogeneous coating is obtained and agglomerates with a “dry-mud” morphology of mixed cerium-aluminium oxide are deposited above the cathodic intermetallic particles, while using a cerium (III) nitrate solution the coating is more uniform but thinner than that obtained with cerium (III) chloride. Solution temperature below 50°C and time of immersion of 10 minutes produces a coating with better corrosion resistance.