Operating Principles of VCSELs

For some time already, vertical-cavity surface-emitting lasers (VCSELs) have emerged from being a laboratory curiosity to an object of industrial mass production. The main applications of the devices are found today in optical interconnects, such as the single-channel Gigabit Ethernet or even parallel transceiver modules based on multimode fiber ribbons, where the 770 to 860 nm wavelength range has been agreed upon as a standard for the below 1 pm wavelength side of the optical spectrum1. This chapter is intended to provide the reader with the basic knowledge necessary to understand VCSEL benefits and limitations and at the same time give an overview of some state-of-the-art performance data obtained experimentally. We start with basic studies of the laser cavity, such as amplification and reflector properties, where essential differences to edge-emitting laser operation are underlined. A better insight into field distributions and energy flux in the VCSEL cavity is then obtained from numerical calculations with the transfer matrix method. Power conversion efficiency is of particular interest and briefly treated separately. Concentrating on a specific kind of high performance VCSEL manufacturing, we then deal with the emission characteristics of oxide-confined devices, describing in some detail the achieved operation and temperature behavior. An intuitive understanding of transverse mode guiding effects is provided. In order to treat dynamic and noise properties, we briefly write down the laser rate equations to obtain small-signal modulation responses as well as relative intensity noise spectra. A concise subsection is devoted to the emission linewidth, basically determined by random spontaneous emission processes. Especially with respect to noise phenomena, the advantages of single- compared to multi-transverse-mode emission become apparent. Finally, as the dominant application area of VCSELs, optical interconnects are discussed, where emphasis is put on fiber-coupling properties, large-signal modulation effects and high-speed optical data transmission over various types of fiber.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[3]  E. H. Linfoot Principles of Optics , 1961 .

[4]  D. Marcuse Light transmission optics , 1972 .

[5]  D. Marcuse,et al.  Light transmission optics /2nd edition/ , 1982 .

[6]  Larry A. Coldren,et al.  Analysis of multielement semiconductor lasers , 1983 .

[7]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[8]  Y. Uematsu,et al.  Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers , 1985, IEEE Journal of Quantum Electronics.

[9]  C. Henry Phase noise in semiconductor lasers , 1986 .

[10]  R. Olshansky,et al.  Frequency response of 1.3µm InGaAsP high speed semiconductor lasers , 1987 .

[11]  P. Yeh,et al.  Optical Waves in Layered Media , 1988 .

[12]  K. Petermann Laser Diode Modulation and Noise , 1988 .

[13]  J. P. Harbison,et al.  Low threshold electrically pumped vertical cavity surface emitting microlasers , 1989, Annual Meeting Optical Society of America.

[14]  L. Coldren,et al.  Design of Fabry-Perot surface-emitting lasers with a periodic gain structure , 1989 .

[15]  B. Tell,et al.  High-power cw vertical-cavity top surface-emitting GaAs quantum well lasers , 1990 .

[16]  J. P. Harbison,et al.  Vertical‐cavity surface‐emitting InGaAs/GaAs lasers with planar lateral definition , 1990 .

[17]  L. Coldren,et al.  Low threshold planarized vertical-cavity surface-emitting lasers , 1990, IEEE Photonics Technology Letters.

[18]  Chung-En Zah,et al.  Multiple wavelength tunable surface-emitting laser arrays , 1991 .

[19]  Larry A. Coldren,et al.  A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks , 1991 .

[20]  M. Osinski,et al.  Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays , 1992 .

[21]  Scott W. Corzine,et al.  Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors , 1992 .

[22]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[23]  K. Kasahara,et al.  Very low threshold current density in vertical-cavity surface-emitting laser diodes with periodically doped distributed Bragg reflectors , 1992 .

[24]  Masayuki Ishikawa,et al.  High speed quantum-well lasers and carrier transport effects , 1992 .

[25]  Mrt Tan,et al.  Large area multitransverse-mode VCSELs for modal noise reduction in multimode fibre systems , 1993 .

[26]  K. Ebeling Integrated Optoelectronics: Waveguide Optics, Photonics, Semiconductors , 1993 .

[27]  Kam Y. Lau,et al.  Chapter 5 – DYNAMICS OF QUANTUM WELL LASERS , 1993 .

[28]  John C. Zolper,et al.  Surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections , 1993 .

[29]  R. Michalzik,et al.  Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes , 1993 .

[30]  Peter S. Zory,et al.  Quantum well lasers , 1993 .

[31]  D. Kuchta,et al.  Mode selective loss penalties in VCSEL optical fiber transmission links , 1994, IEEE Photonics Technology Letters.

[32]  William H. Steier,et al.  Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers , 1994 .

[33]  D. Deppe,et al.  Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .

[34]  Richard B. Miles,et al.  Fundamentals of laser optics , 1994 .

[35]  G. R. Olbright,et al.  Commercial manufacturing of vertical-cavity surface-emitting laser arrays , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[36]  E. Zeeb,et al.  Optimization of planar Be-doped InGaAs VCSEL's with two-sided output , 1995, IEEE Photonics Technology Letters.

[37]  K. Ebeling,et al.  Design of VCSEL's for feedback insensitive data transmission and external cavity active mode-locking , 1995 .

[38]  G. R. Hadley,et al.  Effective index model for vertical-cavity surface-emitting lasers. , 1995, Optics letters.

[39]  Kent D. Choquette,et al.  Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency , 1995 .

[40]  Karl Joachim Ebeling,et al.  VCSEL's with Two-sided Output , 1995 .

[41]  R. Michalzik,et al.  Generalized BV diagrams for higher order transverse modes in planar vertical-cavity laser diodes , 1995 .

[42]  Karl Joachim Ebeling Optical interconnects and data links with VCSEL's , 1995 .

[43]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[44]  Karl Joachim Ebeling,et al.  Planar proton implanted VCSEL's and fiber-coupled 2-D VCSEL arrays , 1995 .

[45]  U. Fiedler,et al.  Top surface-emitting vertical-cavity laser diodes for 10-Gb/s data transmission , 1996, IEEE Photonics Technology Letters.

[46]  Dan Botez,et al.  66% CW wallplug efficiency from Al-free 0.98 /spl mu/m-emitting diode lasers , 1996 .

[47]  Martin Grabherr,et al.  High efficiency selectively oxidised MBE grown vertical-cavity surface-emitting lasers , 1996 .

[48]  Yoshitaka Ohiso,et al.  A monolithically integrated smart pixel using an MSM-PD, MESFET's, and a VCSEL , 1996 .

[49]  R. Michalzik,et al.  Delayed self-heterodyne linewidth measurement of VCSELs , 1996, IEEE Photonics Technology Letters.

[50]  D. Deppe,et al.  Sub-40 μA continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors , 1996, IEEE Photonics Technology Letters.

[51]  Mary K. Hibbs-Brenner,et al.  Vertical-cavity surface-emitting lasers come of age , 1996, Photonics West.

[52]  Karl Joachim Ebeling,et al.  Top Surface-Emitting Vertical-Cavity r Diodes for lO-Gb/s Data Tra , 1996 .

[53]  K. Bertilsson,et al.  High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers , 1997, IEEE Photonics Technology Letters.

[54]  Kent D. Choquette,et al.  Vertical-cavity surface emitting lasers: moving from research to manufacturing , 1997, Proc. IEEE.

[55]  Rainer Michalzik,et al.  4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes , 1997 .

[56]  Spontaneous emission factor of oxidized vertical-cavity surface-emitting lasers from the measured below-threshold cavity loss , 1997 .

[57]  H. Kosaka,et al.  Plastic-based receptacle-type VCSEL-array modules with one and two dimensions fabricated using the self-alignment mounting technique , 1997, 1997 Proceedings 47th Electronic Components and Technology Conference.

[58]  Rainer Michalzik,et al.  High-bit-rate data transmission with short-wavelength oxidized VCSELs, toward bias-free operation , 1997 .

[59]  Rainer Michalzik,et al.  High-performance oxide-confined GaAs VCSELs , 1997 .

[60]  Daniel C. Kilper,et al.  Squeezed light generated by a microcavity laser , 1997, QELS 1997.

[61]  B. E. Hammons,et al.  Small and large signal modulation of 850 nm oxide-confined verticai-cavity surface-emitting lasers , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[62]  K. Ebeling,et al.  Transverse modes under external feedback and fiber coupling efficiencies of VCSEL's , 1998, IEEE Photonics Technology Letters.

[63]  F. Mederer,et al.  Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber , 1998, IEEE Photonics Technology Letters.

[64]  D.W. Dolfi,et al.  Low-cost multimode WDM for local area networks up to 10 Gb/s , 1997, IEEE Photonics Technology Letters.

[65]  1.5 Gbit/s/channel operation of multiple-wavelength vertical-cavity photonic integrated emitter arrays for low-cost multimode WDM local-area networks , 1998 .

[66]  R. Michalzik,et al.  CW operation of a diode cascade InGaAs quantum well VCSEL , 1998 .

[67]  Rainer Michalzik,et al.  Progress in high-power VCSELs and arrays , 1998, Other Conferences.

[68]  Martin Grabherr,et al.  Bias-free 2.5 Gbit/s data transmission using polyimide passivated GaAs VCSELs , 1998 .

[69]  Amnon Yariv,et al.  Time interleaved optical sampling for ultra-high speed A/D conversion , 1998 .

[70]  Feedback insensitive 3 Gb/s fiber interconnect with low noise single-mode VCSEL , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[71]  Larry A. Coldren,et al.  Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset , 1998 .

[72]  Rainer Michalzik,et al.  Noise characteristics of 850 nm single-mode vertical cavity surface emitting lasers , 1998 .

[73]  I. White,et al.  An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links , 1998 .

[74]  Richard V. Penty,et al.  High bandwidth optical links over multimode fibre , 1999, 1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009).

[75]  S. Hunsche,et al.  1-Gb/s BPSK transmission at 850 nm over 1 km of 62.5-μm-core multimode fiber using a single 2.5-GHz subcarrier , 1999, IEEE Photonics Technology Letters.

[76]  H. J. Unold,et al.  High-power VCSELs: single devices and densely packed 2-D-arrays , 1999 .

[77]  G.C. Papen,et al.  3.3-V CMOS pre-equalization VCSEL transmitter for gigabit multimode fiber links , 1999, IEEE Photonics Technology Letters.

[78]  Rainer Michalzik,et al.  Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects , 1999 .

[79]  Roger King,et al.  2D VCSEL arrays for chip-level optical interconnects , 1999, Photonics West.

[80]  J. A. Valdmanis,et al.  Demonstration of 500 nm-Wide Transmission Window at Multi-Gb / s Data Rates in Low-Loss Plastic Optical Fiber , 1999 .

[81]  A. Mooradian,et al.  Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1999 .

[82]  William F. Wiedemann,et al.  Datacom applications for new VCSEL technologies , 2000, Photonics West - Optoelectronic Materials and Devices.

[83]  Casimer M. DeCusatis Fiber Optic Data Communication Technological Trends And Advances , 2000 .

[84]  A. J. Ritger,et al.  Long distance (2.8 km), short wavelength (0.85 µm) data transmission at 10Gb/sec over new generation high bandwidth multimode fiber , 2000, CLEO 2000.

[85]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[86]  Detlef Kuhl,et al.  Current progress of advanced high speed parallel optical links for computer clusters and switching systems , 2000, 2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070).

[87]  M. Kicherer,et al.  Improving single-mode VCSEL performance by introducing a long monolithic cavity , 2000, IEEE Photonics Technology Letters.

[88]  Karlheinz H. Gulden,et al.  High-spectral-purity VCSELs for spectroscopy and sensors , 2000, Photonics West - Optoelectronic Materials and Devices.

[89]  Richard V. Penty,et al.  Theoretical investigation of the evolution of the transverse modes in vertical-cavity surface-emitting lasers , 2000, Photonics West - Optoelectronic Materials and Devices.

[90]  R. Michalzik,et al.  Improved output performance of high-power VCSELs , 2001 .

[91]  Roger King,et al.  VCSEL arrays for CMOS integrated optical interconnect systems , 2001, SPIE ITCom.

[92]  A. Mooradian High brightness cavity-controlled surface emitting GaInAs lasers operating at 980 nm , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[93]  M. Golling,et al.  Scaling behavior of bipolar cascade VCSELs , 2001, IEEE Photonics Technology Letters.

[94]  Rainer Michalzik,et al.  High-Performance VCSELs for Optical Data Links , 2001 .

[95]  Sandu Popescu,et al.  OSA trends in optics and photonics , 2003 .

[96]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .