Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples

Abstract Due to increased concerns about food safety, rapid, specific and highly sensitive monitoring of pathogen bacteria in food samples is of great importance to ensure public health. Although traditional detection methods are available, they are time consuming, labor intensive, unsuitable for on-site detection, and need highly trained personnel. To overcome these limitations, many efforts have been devoted to develop a new class of bioassays, aptamer-based assays, which use nucleic acid as bio-recognition elements. Aptamer-based assays and aptasensors, as emerging analytical methods, have opened new horizons for simple, specific and sensitive detection of microorganisms including pathogen bacteria. This review therefore will focus on new developed aptamer-based assays and aptasensors for pathogenic bacteria in food samples. We will also highlight advantages and drawbacks of various types of assays developed for pathogen bacteria detection.

[1]  Yanbin Li,et al.  Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells. , 2009, Biosensors & bioelectronics.

[2]  Zhouping Wang,et al.  Aptasensors for quantitative detection of Salmonella Typhimurium. , 2017, Analytical biochemistry.

[3]  Yun Wang,et al.  Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. , 2016, Comprehensive reviews in food science and food safety.

[4]  V. Adam,et al.  Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. , 2015, Biosensors & bioelectronics.

[5]  A. Abbaspour,et al.  Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. , 2015, Biosensors & bioelectronics.

[6]  Cristina Freire,et al.  Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment. , 2018, Biosensors & bioelectronics.

[7]  K. Gupta,et al.  Identification of environmental reservoirs of nontyphoidal salmonellosis: aptamer-assisted bioconcentration and subsequent detection of salmonella typhimurium by quantitative polymerase chain reaction. , 2011, Environmental science & technology.

[8]  Dihan Hasan,et al.  Near‐Field Enhanced Plasmonic‐Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis , 2013 .

[9]  Masayuki Nogami,et al.  Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering , 2008 .

[10]  Rezvan Yazdian Robati,et al.  Aptasensors for quantitative detection of kanamycin. , 2016, Biosensors & bioelectronics.

[11]  M. Mascini,et al.  Analytical applications of aptamers. , 2005, Biosensors & bioelectronics.

[12]  Terry W. J. Steele,et al.  Recent advances in aptasensors based on graphene and graphene-like nanomaterials. , 2015, Biosensors & bioelectronics.

[13]  Abdur Rahim,et al.  An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food , 2017, Sensors.

[14]  S. Timur,et al.  A sandwich-type assay based on quantum dot/aptamer bioconjugates for analysis of E. Coli O157:H7 in microtiter plate format , 2016 .

[15]  John G. Bruno,et al.  Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold , 2014, Pathogens.

[16]  Qiu-Yue Wang,et al.  Bioprobes Based on Aptamer and Silica Fluorescent Nanoparticles for Bacteria Salmonella typhimurium Detection , 2016, Nanoscale Research Letters.

[17]  Ji Hoon Lee,et al.  Chemiluminescent aptasensor capable of rapidly quantifying Escherichia Coli O157:H7. , 2016, Talanta.

[18]  L. Deng,et al.  Determination of Shigella flexneri by a Novel Fluorescent Aptasensor , 2015 .

[19]  Xuewen Lu,et al.  Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. , 2014, Biosensors & bioelectronics.

[20]  Rijun Gui,et al.  Carbon nanomaterials-based electrochemical aptasensors. , 2016, Biosensors & bioelectronics.

[21]  S. M. Taghdisi,et al.  Ultrasensitive detection of aflatoxin B1 and its major metabolite aflatoxin M1 using aptasensors: A review , 2018 .

[22]  R. Gargallo,et al.  Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7 , 2018 .

[23]  Fei Jia,et al.  Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes , 2015, Microchimica Acta.

[24]  Zhouping Wang,et al.  Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. , 2014, Analytical chemistry.

[25]  S. Y. Lee,et al.  Optical Biosensors for the Detection of Pathogenic Microorganisms. , 2016, Trends in biotechnology.

[26]  Hui Zhang,et al.  Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. , 2015, Biosensors & bioelectronics.

[27]  Piezoelectric Flow Injection Analysis Biosensor for the Detection of Salmonella Typhimurium , 2002 .

[28]  A. Deep,et al.  Biofunctionalized rebar graphene (f-RG) for label-free detection of cardiac marker troponin I. , 2014, ACS applied materials & interfaces.

[29]  Akhtar Hayat,et al.  Portable Nanoparticle-Based Sensors for Food Safety Assessment , 2015, Sensors.

[30]  Yibin Ying,et al.  Subtractive Inhibition Assay for the Detection of E. coli O157:H7 Using Surface Plasmon Resonance , 2011, Sensors.

[31]  R Lejeune,et al.  Chemiluminescence as diagnostic tool. A review. , 2000, Talanta.

[32]  C. Bayraç,et al.  DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis. , 2017, Biosensors & bioelectronics.

[33]  P. Ajayan,et al.  Three-Dimensional Rebar Graphene. , 2017, ACS applied materials & interfaces.

[34]  Hua Ye,et al.  Advances in aptasensors for the detection of food contaminants. , 2016, The Analyst.

[35]  Hui Zhang,et al.  Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. , 2016, International journal of food microbiology.

[36]  Hengyi Xu,et al.  Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. , 2011, Biomaterials.

[37]  M. Mascini,et al.  Aptamers-based assays for diagnostics, environmental and food analysis. , 2007, Biomolecular engineering.

[38]  J. Baudart,et al.  Aptasensor and genosensor methods for detection of microbes in real world samples. , 2013, Methods.

[39]  G. S. Zamay,et al.  Aptamer-based viability impedimetric sensor for bacteria. , 2012, Analytical chemistry.

[40]  F. Ibrahim,et al.  Development of an aptasensor using reduced graphene oxide chitosan complex to detect Salmonella , 2017 .

[41]  I. Tothill,et al.  Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. , 2013, Talanta.

[42]  Ihab Abdel-Hamid,et al.  Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria , 2000 .

[43]  Rui Liu,et al.  Silver Enhancement of Gold Nanoparticles for Biosensing: From Qualitative to Quantitative , 2014 .

[44]  N. Dilbaghi,et al.  Biosensors as innovative tools for the detection of food borne pathogens. , 2011, Biosensors & bioelectronics.

[45]  Haibo Zhou,et al.  Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. , 2017, Biosensors & bioelectronics.

[46]  A. Kouzani,et al.  Aptasensors: a review. , 2010, Journal of biomedical nanotechnology.

[47]  Xuewen Lu,et al.  A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. , 2015, Analytica chimica acta.

[48]  R. Beumer,et al.  Methodology for detection and typing of foodborne microorganisms. , 1999, International journal of food microbiology.

[49]  Ji Hoon Lee,et al.  Development of 1,1'-oxalyldiimidazole chemiluminescent biosensor using the combination of graphene oxide and hairpin aptamer and its application. , 2014, Talanta.

[50]  A. Baeumner,et al.  RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. , 2003, Biosensors & bioelectronics.

[51]  Zhouping Wang,et al.  A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. , 2014, Analytical biochemistry.

[52]  L. Deng,et al.  Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform , 2014, Microchimica Acta.

[53]  A. P. F. Turner,et al.  Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. , 2016, Biosensors & bioelectronics.

[54]  S. M. Taghdisi,et al.  Ultrasensitive detection of ochratoxin A using aptasensors. , 2017, Biosensors & bioelectronics.

[55]  Lei Wang,et al.  Optical aptasensors for quantitative detection of small biomolecules: a review. , 2014, Biosensors & bioelectronics.

[56]  Liling Hao,et al.  A chemiluminescent aptasensor based on rolling circle amplification and Co2+/N-(aminobutyl)-N-(ethylisoluminol) functional flowerlike gold nanoparticles for Salmonella typhimurium detection. , 2017, Talanta.

[57]  M. Widdowson,et al.  Foodborne Illness Acquired in the United States—Major Pathogens , 2011, Emerging infectious diseases.

[58]  Richard A. Durst,et al.  ELECTROCHEMICAL BIOSENSORS: RECOMMENDED DEFINITIONS AND CLASSIFICATION* , 2001 .

[59]  Myung-Hyun Lee,et al.  Rapid detection of food pathogens using RNA aptamers-immobilized slide. , 2012, Journal of nanoscience and nanotechnology.

[60]  Z. Zhaoyang,et al.  Recent advances of aptamer sensors , 2008 .

[61]  Q. Song,et al.  Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles. , 2015, ACS applied materials & interfaces.

[62]  W. Tseng,et al.  Amplified Peroxidase-Like Activity in Iron Oxide Nanoparticles Using Adenosine Monophosphate: Application to Urinary Protein Sensing. , 2017, ACS applied materials & interfaces.

[63]  Jinghong Li,et al.  Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics. , 2017, International journal of food microbiology.

[64]  Wen-he Wu,et al.  Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium , 2012, Nanoscale Research Letters.

[65]  Ronghua Yang,et al.  A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. , 2016, Chemical communications.

[66]  Feng Xu,et al.  Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. , 2017, Biosensors & bioelectronics.

[67]  Nuo Duan,et al.  Colorimetric Aptasensor Based on Enzyme for the Detection of Vibrio parahemolyticus. , 2015, Journal of agricultural and food chemistry.

[68]  Ailiang Chen,et al.  Replacing antibodies with aptamers in lateral flow immunoassay. , 2015, Biosensors & bioelectronics.

[69]  Deren Yang,et al.  Fabrication of flower-like silver structures through anisotropic growth. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[70]  S. Shahrokhian,et al.  Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of Salmonella typhimurium , 2018 .

[71]  Akhtar Hayat,et al.  Aptamer based electrochemical sensors for emerging environmental pollutants , 2014, Front. Chem..

[72]  Zhouping Wang,et al.  An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection. , 2017, Analytica chimica acta.

[73]  M. Mascini,et al.  Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical Report) , 2010 .

[74]  Richa Sharma,et al.  Recent advances in nanoparticle based aptasensors for food contaminants. , 2015, Biosensors & bioelectronics.

[75]  A. Radi,et al.  Electrochemical Aptamer-Based Biosensors: Recent Advances and Perspectives , 2011 .

[76]  Renjie Wang,et al.  Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe , 2015 .

[77]  W. Qin,et al.  Potentiometric aptasensing of Listeria monocytogenes using protamine as an indicator. , 2014, Analytical chemistry.

[78]  D. Pan,et al.  Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus , 2017, Microchimica Acta.

[79]  Lining Sun,et al.  Controlled optical characteristics of lanthanide doped upconversion nanoparticles for emerging applications. , 2017, Dalton transactions.

[80]  J. Sivils,et al.  Further characterization and independent validation of a DNA aptamer-quantum dot-based magnetic sandwich assay for Campylobacter , 2017, Folia Microbiologica.

[81]  Nuo Duan,et al.  Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. , 2012, Analytica chimica acta.

[82]  Eric S. McLamore,et al.  Impedance biosensor for the rapid detection of Listeria spp. based on aptamer functionalized Pt-interdigitated microelectrodes array , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[83]  Miriam Jauset-Rubio,et al.  Advances in aptamers-based lateral flow assays , 2017 .

[84]  Carme Pastells,et al.  Nanoparticle-based biosensors for detection of pathogenic bacteria , 2009 .

[85]  Jung Hun Lee,et al.  Guanine chemiluminescent biosensor capable of rapidly sensing mercury in a sample , 2015 .

[86]  Nuo Duan,et al.  Vibrio parahaemolyticus detection aptasensor using surface-enhanced Raman scattering , 2016 .

[87]  L. Wang,et al.  A visual detection method for Salmonella Typhimurium based on aptamer recognition and nanogold labeling , 2014 .

[88]  P. Si,et al.  An overview of dealloyed nanoporous gold in bioelectrochemistry. , 2016, Bioelectrochemistry.

[89]  Ronghui Wang,et al.  A Fluorescent Aptasensor Coupled with Nanobead-Based Immunomagnetic Separation for Simultaneous Detection of Four Foodborne Pathogenic Bacteria , 2015 .

[90]  Jiadong Huang,et al.  Enzymatic repairing amplification-based versatile signal-on fluorescence sensing platform for detecting pathogenic bacteria , 2017 .

[91]  Jiří Homola,et al.  Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor , 2005 .

[92]  Manoj K. Nayak,et al.  Fluorescent Nanobiosensors for the Targeted Detection of Foodborne Bacteria , 2017 .

[93]  X. Qu,et al.  Colorimetric Biosensing Using Smart Materials , 2011, Advanced materials.

[94]  Anthony Turner,et al.  Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. , 2008 .

[95]  Huangxian Ju,et al.  A Rapid and Sensitive Aptamer-Based Electrochemical Biosensor for Direct Detection of Escherichia Coli O111 , 2012 .

[96]  Huifeng Qian,et al.  A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). , 2006, Angewandte Chemie.

[97]  Harmanjit Kaur,et al.  Bridged Rebar Graphene functionalized aptasensor for pathogenic E. coli O78:K80:H11 detection. , 2017, Biosensors & bioelectronics.

[98]  Xumin Xu,et al.  SERS aptasensor for Salmonella typhimurium detection based on spiny gold nanoparticles , 2018 .

[99]  R. Niessner,et al.  Synthesis of core-shell surface-enhanced Raman tags for bioimaging. , 2010, Analytical chemistry.