Interior derivative estimates for the Kähler–Ricci flow

We give a maximum principle proof of interior derivative estimates for the K\"ahler-Ricci flow, assuming local uniform bounds on the metric.

[1]  M. Gill Convergence of the parabolic complex Monge-Amp\`ere equation on compact Hermitian manifolds , 2010, 1009.5756.

[2]  Xiangwen Zhang,et al.  Regularity estimates of solutions to complex Monge–Ampère equations on Hermitian manifolds , 2010, 1007.2627.

[3]  B. Weinkove,et al.  Contracting exceptional divisors by the Kähler–Ricci flow II , 2010, 1102.1759.

[4]  B. Weinkove,et al.  Contracting exceptional divisors by the K , 2010 .

[5]  Jian Song,et al.  The Kähler–Ricci flow through singularities , 2009, 0909.4898.

[6]  Valentino Tosatti Adiabatic limits of Ricci-flat Kähler metrics , 2009, 0905.4718.

[7]  B. Weinkove,et al.  The Kähler–Ricci flow on Hirzebruch surfaces , 2009, 0903.1900.

[8]  P. Baird The Ricci flow: techniques and applications -Part I: Geometric aspects (Mathematical Surveys and Monographs 135) , 2008 .

[9]  Zhou Zhang Scalar Curvature Bound for K\"ahler-Ricci Flows over Minimal Manifolds of General Type , 2008, 0801.3248.

[10]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[11]  S. Yau,et al.  Taming symplectic forms and the Calabi–Yau equation , 2007, math/0703773.

[12]  D. Phong,et al.  Multiplier Ideal Sheaves and the K\"ahler-Ricci Flow , 2006, math/0611794.

[13]  Zhou Zhang,et al.  On the Kähler-Ricci Flow on Projective Manifolds of General Type , 2006 .

[14]  B. Chow,et al.  The Ricci Flow : An Introduction I , 2013 .

[15]  Albert Chau CONVERGENCE OF THE KÄHLER-RICCI FLOW ON NONCOMPACT KÄHLER MANIFOLDS , 2004 .

[16]  H. Tsuji Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type , 1988 .

[17]  S. Bando Real analyticity of solutions of Hamilton's equation , 1987 .

[18]  Huai-Dong Cao,et al.  Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds , 1985 .

[19]  N. Krylov,et al.  BOUNDEDLY NONHOMOGENEOUS ELLIPTIC AND PARABOLIC EQUATIONS IN A DOMAIN , 1984 .

[20]  N. Krylov,et al.  BOUNDEDLY NONHOMOGENEOUS ELLIPTIC AND PARABOLIC EQUATIONS , 1983 .

[21]  Lawrence C. Evans,et al.  Classical solutions of fully nonlinear, convex, second‐order elliptic equations , 1982 .

[22]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[23]  B. Weinkove,et al.  On the convergence of the modified Kähler–Ricci flow and solitons , 2011 .

[24]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[25]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .

[26]  Wan-Xiong Shi Ricci deformation of the metric on complete noncompact Riemannian manifolds , 1989 .

[27]  P. Cherrier Equations de Monge-Ampère sur les variétés Hermitiennes compactes , 1987 .

[28]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[29]  Eugenio Calabi,et al.  Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. , 1958 .