Tree Species Discrimination in Tropical Forests Using Airborne Imaging Spectroscopy

We identify canopy species in a Hawaiian tropical forest using supervised classification applied to airborne hyperspectral imagery acquired with the Carnegie Airborne Observatory-Alpha system. Nonparametric methods (linear and radial basis function support vector machine, artificial neural network, and k-nearest neighbor) and parametric methods (linear, quadratic, and regularized discriminant analysis) are compared for a range of species richness values and training sample sizes. We find a clear advantage in using regularized discriminant analysis, linear discriminant analysis, and support vector machines. No unique optimal classifier was found for all conditions tested, but we highlight the possibility of improving support vector machine classification with a better optimization of its free parameters. We also confirm that a combination of spectral and spatial information increases accuracy of species classification: we combine segmentation and species classification from regularized discriminant analysis to produce a map of the 17 discriminated species. Finally, we compare different methods to assess spectral separability and find a better ability of Bhattacharyya distance to assess separability within and among species. The results indicate that species mapping is tractable in tropical forests when using high-fidelity imaging spectroscopy.

[1]  Lorenzo Bruzzone,et al.  Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  D. Roberts,et al.  Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales , 2005 .

[4]  Jenq-Neng Hwang,et al.  Introduction to Neural Networks for Signal Processing , 2001, Handbook of Neural Network Signal Processing.

[5]  Benoit Rivard,et al.  Species Classification of Tropical Tree Leaf Reflectance and Dependence on Selection of Spectral Bands , 2008 .

[6]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[7]  Terry Caelli,et al.  Hyperspectral discrimination of tropical dry forest lianas and trees: Comparative data reduction approaches at the leaf and canopy levels , 2007 .

[8]  D. Leckie,et al.  Issues in species classification of trees in old growth conifer stands , 2005 .

[9]  Ruiliang Pu,et al.  Invasive species change detection using artificial neural networks and CASI hyperspectral imagery , 2008, Environmental monitoring and assessment.

[10]  Roberta E. Martin,et al.  Hyperspectral Remote Sensing of Canopy Biodiversity in Hawaiian Lowland Rainforests , 2007, Ecosystems.

[11]  Giles M. Foody,et al.  Hard and soft classifications by a neural network with a non-exhaustively defined set of classes , 2002 .

[12]  E. LeDrew,et al.  Remote sensing of aquatic coastal ecosystem processes , 2006 .

[13]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[14]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[15]  Robert P.W. Duin,et al.  PRTools3: A Matlab Toolbox for Pattern Recognition , 2000 .

[16]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  D. Leckie Stand delineation and composition estimation using semi-automated individual tree crown analysis , 2003 .

[18]  Herna L. Viktor,et al.  Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach , 2004, SKDD.

[19]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[20]  David A. Landgrebe,et al.  The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon , 1994, IEEE Trans. Geosci. Remote. Sens..

[21]  R. Wynne,et al.  Examining pine spectral separability using hyperspectral data from an airborne sensor: An extension of field‐based results , 2007 .

[22]  Reyer Zwiggelaar,et al.  Combining Texture and Hyperspectral Information for the Classification of Tree Species in Australian Savanna Woodlands , 2009 .

[23]  Juan J. Flores,et al.  The application of artificial neural networks to the analysis of remotely sensed data , 2008 .

[24]  M. Cochrane Using vegetation reflectance variability for species level classification of hyperspectral data , 2000 .

[25]  Joseph R. Rausch,et al.  A comparison of linear and mixture models for discriminant analysis under nonnormality , 2009, Behavior research methods.

[26]  Barnali M. Dixon,et al.  Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? , 2008 .

[27]  Tung Fung,et al.  Hyperspectral data analysis for subtropical tree species recognition , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[28]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[29]  Paul M. Mather,et al.  Support vector machines for classification in remote sensing , 2005 .

[30]  Jon Atli Benediktsson,et al.  Segmentation and classification of hyperspectral images using watershed transformation , 2010, Pattern Recognit..

[31]  Helmi Zulhaidi Mohd Shafri,et al.  The Performance of Maximum Likelihood, Spectral Angle Mapper, Neural Network and Decision Tree Classifiers in Hyperspectral Image Analysis , 2007 .

[32]  Khaled S. Ahmed,et al.  Estimating Protein Functions Correlation Based on Overlapping Proteins and Cluster Interactions , 2012 .

[33]  Giles M. Foody,et al.  Tree biodiversity in protected and logged Bornean tropical rain forests and its measurement by satellite remote sensing , 2003 .

[34]  Roberta E. Martin,et al.  Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests , 2009 .

[35]  A. Peterson,et al.  Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin , 2010 .

[36]  Lorenzo Bruzzone,et al.  A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images , 1999, IEEE Trans. Geosci. Remote. Sens..

[37]  J. D. Paola,et al.  The Effect of Neural-Network Structure on a Multispectral Land-Use/Land-Cover Classification , 1997 .

[38]  J. Friedman Regularized Discriminant Analysis , 1989 .

[39]  Jean-Michel Roger,et al.  Hyperspectral image segmentation: The butterfly approach , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[40]  Jean-Baptiste Féret,et al.  Spectroscopic classification of tropical forest species using radiative transfer modeling , 2011 .

[41]  Timothy A. Warner,et al.  Segmentation and classification of high resolution imagery for mapping individual species in a closed canopy, deciduous forest , 2006 .

[42]  Roberta E. Martin,et al.  Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. , 2008 .

[43]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[45]  R. Lucas,et al.  Classification of Australian forest communities using aerial photography, CASI and HyMap data , 2008 .

[46]  J. C. Price How unique are spectral signatures , 1994 .

[47]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[48]  Lorenzo Bruzzone,et al.  A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[49]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[50]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .

[51]  Lorenzo Bruzzone,et al.  Toward the Automatic Updating of Land-Cover Maps by a Domain-Adaptation SVM Classifier and a Circular Validation Strategy , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Yang Hong,et al.  A back - propagation neural network for mineralogical mapping from AVIRIS data , 1997 .

[53]  Roberta E. Martin,et al.  Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems , 2007 .

[54]  F. Gougeon Comparison of Possible Multispectral Classification Schemes for Tree Crowns Individually Delineatedon High Spatial Resolution MEIS Images , 1995 .

[55]  Ruiliang Pu,et al.  Conifer species recognition: An exploratory analysis of in situ hyperspectral data , 1997 .

[56]  Frédéric Bretar,et al.  3-D mapping of a multi-layered Mediterranean forest using ALS data , 2012 .

[57]  Benoit Rivard,et al.  Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery , 2006 .

[58]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[59]  Peter Meer,et al.  Synergism in low level vision , 2002, Object recognition supported by user interaction for service robots.

[60]  Richard G. Oderwald,et al.  Spectral Separability among Six Southern Tree Species , 2000 .

[61]  Benoit Rivard,et al.  Variability in leaf optical properties of Mesoamerican trees and the potential for species classification. , 2006, American journal of botany.

[62]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[63]  G. Foody,et al.  Mapping the species richness and composition of tropical forests from remotely sensed data with neural networks , 2006 .

[64]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[65]  GuoHongyu,et al.  Learning from imbalanced data sets with boosting and data generation , 2004 .

[66]  Tom Fawcett,et al.  Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions , 1997, KDD.

[67]  Terry Caelli,et al.  Discrimination of lianas and trees with leaf-level hyperspectral data , 2004 .

[68]  Paul M. Mather,et al.  The use of backpropagating artificial neural networks in land cover classification , 2003 .

[69]  Robert O. Green,et al.  On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina , 2003, IEEE Trans. Geosci. Remote. Sens..