Wootters’ distance revisited: a new distinguishability criterium

Abstract.The notion of distinguishability between quantum states has shown to be fundamental in the frame of quantum information theory. In this paper we present a new distinguishability criterium by using a information theoretic quantity: the Jensen-Shannon divergence (JSD). This quantity has several interesting properties, both from a conceptual and a formal point of view. Previous to define this distinguishability criterium, we review some of the most frequently used distances defined over quantum mechanics’ Hilbert space. In this point our main claim is that the JSD can be taken as a unifying distance between quantum states.

[1]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[2]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[3]  W. Wootters Statistical distance and Hilbert space , 1981 .

[4]  Dominik Endres,et al.  A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.

[5]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[6]  Shun-ichi Amari,et al.  Differential geometry of statistical inference , 1983 .

[7]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[8]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[9]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[10]  Flemming Topsøe,et al.  Jensen-Shannon divergence and Hilbert space embedding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[11]  S. A. Huggett,et al.  The geometric universe : science, geometry, and the work of Roger Penrose , 1998 .

[12]  L. Kwek,et al.  Quantum Jeffreys prior for displaced squeezed thermal states , 1999 .

[13]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[14]  A. R. Plastino,et al.  INFORMATION AND METRICS IN HILBERT SPACE , 1997 .

[15]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[16]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[17]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[18]  R. Jozsa,et al.  The Geometric Universe , 1998 .

[19]  Abe Quantized geometry associated with uncertainty and correlation. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[20]  I. Grosse,et al.  Analysis of symbolic sequences using the Jensen-Shannon divergence. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.