Wootters’ distance revisited: a new distinguishability criterium
暂无分享,去创建一个
P. W. Lamberti | A. Plastino | A. Majtey | M. T. Martín | A. Plastino | A. Majtey | P. W. Lamberti | M. T. Martin
[1] V. Vedral. The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.
[2] Aharonov,et al. Geometry of quantum evolution. , 1990, Physical review letters.
[3] W. Wootters. Statistical distance and Hilbert space , 1981 .
[4] Dominik Endres,et al. A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.
[5] J. Wheeler,et al. Quantum theory and measurement , 1983 .
[6] Shun-ichi Amari,et al. Differential geometry of statistical inference , 1983 .
[7] G. Lindblad. Entropy, information and quantum measurements , 1973 .
[8] C. Berg,et al. Harmonic Analysis on Semigroups , 1984 .
[9] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[10] Flemming Topsøe,et al. Jensen-Shannon divergence and Hilbert space embedding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[11] S. A. Huggett,et al. The geometric universe : science, geometry, and the work of Roger Penrose , 1998 .
[12] L. Kwek,et al. Quantum Jeffreys prior for displaced squeezed thermal states , 1999 .
[13] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[14] A. R. Plastino,et al. INFORMATION AND METRICS IN HILBERT SPACE , 1997 .
[15] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[16] Gilles Brassard,et al. Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.
[17] C. Fuchs,et al. Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.
[18] R. Jozsa,et al. The Geometric Universe , 1998 .
[19] Abe. Quantized geometry associated with uncertainty and correlation. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[20] I. Grosse,et al. Analysis of symbolic sequences using the Jensen-Shannon divergence. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.