Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs).

A 7% Yb:YLF crystal is laser cooled to 131 ± 1 K from room temperature by placing it inside the external cavity of a high power InGaAs/GaAs VECSEL operating at 1020 nm with 0.15 nm linewidth. This is the lowest temperature achieved in the intracavity geometry to date and presents major progress towards realizing an all-solid-state compact optical cryocooler.

[1]  Mansoor Sheik-Bahae,et al.  Optical refrigeration : science and applications of laser cooling of solids , 2009 .

[2]  Martin Nikl,et al.  Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature. , 2009, Optics express.

[3]  P. Pringsheim Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung , 1929 .

[4]  Marc E. Brown,et al.  Patent pending , 1995 .

[5]  T. R. Gosnell,et al.  Observation of laser-induced fluorescent cooling of a solid , 1995, Nature.

[6]  G. Rumbles,et al.  Feasibility evaluation of intracavity solid state laser cooling to cryogenic temperatures , 2006 .

[7]  Martin D. Dawson,et al.  Semiconductor disk lasers for the generation of visible and ultraviolet radiation , 2009 .

[8]  M. Kuznetsov,et al.  High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1997, IEEE Photonics Technology Letters.

[9]  Mansoor Sheik-Bahae,et al.  Cryogenic optical refrigeration , 2012 .

[10]  Oleg G. Okhotnikov,et al.  Semiconductor Disk Lasers: Physics and Technology , 2010 .

[11]  S. Greenfield,et al.  Advances in Laser Cooling of Thulium-Doped Glass , 2003 .

[12]  Jorg Hader,et al.  Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers , 2006 .

[13]  S. Greenfield,et al.  Cooling to 208K by optical refrigeration , 2005 .

[14]  Mansoor Sheik-Bahae,et al.  Differential luminescence thermometry in semiconductor laser cooling , 2006, SPIE OPTO.

[15]  Jorg Hader,et al.  106 W continuous-wave output power from vertical-external-cavity surface-emitting laser , 2012 .

[16]  Lloyd L. Chase,et al.  Evaluation of absorption and emission properties of Yb/sup 3+/ doped crystals for laser applications , 1993 .

[17]  Alexander R. Albrecht,et al.  Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF , 2014 .

[18]  Mansoor Sheik-Bahae,et al.  Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K. , 2014, Optics express.

[19]  Mansoor Sheik-Bahae,et al.  Resonant cavity-enhanced absorption for optical refrigeration , 2010 .

[20]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids to cryogenic temperatures , 2010 .

[21]  R. Epstein,et al.  Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration , 1999 .

[22]  M. Sheik-Bahae,et al.  Laser cooling of solids , 2009 .

[23]  Garry Rumbles,et al.  Comparative intra- versus extra-cavity laser cooling efficiencies , 2002 .

[24]  G. Rumbles,et al.  Experimental demonstration of intracavity solid-state laser cooling of Yb{sup 3+}:ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF glass , 2004 .

[25]  Mansoor Sheik-Bahae,et al.  Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature. , 2013, Optics letters.

[26]  Seth D. Melgaard,et al.  Cryogenic optical refrigeration: Laser cooling of solids below 123 K , 2013 .

[27]  Markus P. Hehlen,et al.  Model of laser cooling in theYb3+-doped fluorozirconate glass ZBLAN , 2007 .