Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing

In this paper, we study the tradeoffs between the error probabilities of classical-quantum channels and the blocklength <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> when the transmission rates approach the channel capacity at a rate lower than <inline-formula> <tex-math notation="LaTeX">$1/\sqrt {n}$ </tex-math></inline-formula>, a research topic known as moderate deviation analysis. We show that the optimal error probability vanishes under this rate convergence. Our main technical contributions are a tight quantum sphere-packing bound, obtained via Chaganty and Sethuraman’s concentration inequality in strong large deviation theory, and asymptotic expansions of error-exponent functions. Moderate deviation analysis for quantum hypothesis testing is also established. The converse directly follows from our channel coding result, while the achievability relies on a martingale inequality.

[1]  Naresh Sharma,et al.  On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.

[2]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[3]  Jiang Zeng,et al.  New Euler-Mahonian Statistics on Permutations and Words , 1997 .

[4]  M. Junge,et al.  Noncommutative Bennett and Rosenthal inequalities , 2011, 1111.1027.

[5]  Anders Claesson,et al.  Catalan continued fractions and increasing subsequences in permutations , 2002, Discret. Math..

[6]  Min-Hsiu Hsieh,et al.  Concavity of the Auxiliary Function for Classical-Quantum Channels , 2016, IEEE Transactions on Information Theory.

[7]  Milán Mosonyi,et al.  Strong Converse Exponent for Classical-Quantum Channel Coding , 2014, Communications in Mathematical Physics.

[8]  Masahito Hayashi Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.

[9]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[10]  Marco Tomamichel,et al.  Sphere-packing bound for symmetric classical-quantum channels , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[11]  Jean-Christophe Bourin Matrix versions of some classical inequalities , 2006 .

[12]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[13]  Christian Stump Séminaire Lotharingien de Combinatoire 60 (2009), Article B60a ON BIJECTIONS BETWEEN 231-AVOIDING PERMUTATIONS AND DYCK , 2022 .

[14]  By Ke Li SECOND-ORDER ASYMPTOTICS FOR QUANTUM HYPOTHESIS TESTING , 2018 .

[15]  R. Sibson Information radius , 1969 .

[16]  S. Verdú,et al.  Channel dispersion and moderate deviations limits for memoryless channels , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[17]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[18]  Ritsuo Nakamoto,et al.  Concavity of the Auxiliary Function Appearing in Quantum Reliability Function , 2006, IEEE Trans. Inf. Theory.

[19]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[20]  R. Nakamoto,et al.  Remarks on concavity of the auxiliary function appearing in quantum reliability function in classical-quantum channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[21]  M. Nussbaum,et al.  Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.

[22]  Sen-Peng Eu,et al.  Area of Catalan paths on a checkerboard , 2006, Eur. J. Comb..

[23]  Doron Zeilberger,et al.  Babson-Steingrı'msson Statistics are Indeed Mahonian (and Sometimes Even Euler-Mahonian) , 2001, Adv. Appl. Math..

[24]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[25]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[26]  R. Bhatia Matrix Analysis , 1996 .

[27]  Marco Tomamichel,et al.  Quantum Information Processing with Finite Resources - Mathematical Foundations , 2015, ArXiv.

[28]  Vincent Y. F. Tan,et al.  Moderate Deviation Analysis for Classical Communication over Quantum Channels , 2017, Communications in Mathematical Physics.

[29]  Sergey Kitaev,et al.  Classification of bijections between 321- and 132-avoiding permutations , 2008, 0805.1325.

[30]  Evgueni Haroutunian,et al.  Reliability Criteria in Information Theory and in Statistical Hypothesis Testing , 2008, Found. Trends Commun. Inf. Theory.

[31]  Aaron B. Wagner,et al.  Moderate deviation analysis of channel coding: Discrete memoryless case , 2010, 2010 IEEE International Symposium on Information Theory.

[32]  Milán Mosonyi,et al.  Two Approaches to Obtain the Strong Converse Exponent of Quantum Hypothesis Testing for General Sequences of Quantum States , 2014, IEEE Transactions on Information Theory.

[33]  Bruce E. Sagan,et al.  Permutation patterns and statistics , 2011, Discret. Math..

[34]  I. Csiszár Generalized Cutoff Rates and Renyi's Information Measures , 1993, Proceedings. IEEE International Symposium on Information Theory.

[35]  Igal Sason,et al.  On Refined Versions of the Azuma-Hoeffding Inequality with Applications in Information Theory , 2011, ArXiv.

[36]  Alexander S. Holevo,et al.  Reliability function of general classical-Quantum channel , 1999, IEEE Trans. Inf. Theory.

[37]  R. Gallager Information Theory and Reliable Communication , 1968 .

[38]  Marco Tomamichel,et al.  Investigating properties of a family of quantum Rényi divergences , 2014, Quantum Inf. Process..

[39]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[40]  Nilanjana Datta,et al.  Finite Blocklength and Moderate Deviation Analysis of Hypothesis Testing of Correlated Quantum States and Application to Classical-Quantum Channels With Memory , 2016, IEEE Transactions on Information Theory.

[41]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[42]  M. Nussbaum,et al.  THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM HYPOTHESIS TESTING , 2006, quant-ph/0607216.

[43]  Aaron B. Wagner,et al.  Refinement of the Sphere-Packing Bound: Asymmetric Channels , 2012, IEEE Transactions on Information Theory.

[44]  J. Shaw Combinatory Analysis , 1917, Nature.

[45]  H. Nagaoka The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.

[46]  Dennis Stanton,et al.  Octobasic Laguerre polynomials and permutation statistics , 1996 .

[47]  G. Pisier,et al.  Non-Commutative Martingale Inequalities , 1997, math/9704209.

[48]  Richard E. Blahut,et al.  Hypothesis testing and information theory , 1974, IEEE Trans. Inf. Theory.

[49]  Bruce E. Sagan,et al.  Inversion polynomials for 321-avoiding permutations , 2011, Discret. Math..

[50]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[51]  Doron Zeilberger,et al.  Denert's permutation statistic is indeed Euler-Mahonian , 1990 .

[52]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[53]  N. Sloane,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I , 1993 .

[54]  Marco Dalai,et al.  Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels , 2014, IEEE Transactions on Information Theory.

[55]  Marco Tomamichel,et al.  Quantum Sphere-Packing Bounds With Polynomial Prefactors , 2017, IEEE Transactions on Information Theory.

[56]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[57]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[58]  H. Yuen Coding theorems of quantum information theory , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[59]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[61]  Kenjiro Yanagi,et al.  Remarks on concavity of the auxiliary function appearing in quantum reliability function in classical-quantum channels , 2005, ISIT.

[62]  Shouxiao Li,et al.  A New Bijective Proof of Babson and Steingrímsson's Conjecture , 2017, Electron. J. Comb..

[63]  Sergey Kitaev,et al.  Patterns in Permutations and Words , 2011, Monographs in Theoretical Computer Science. An EATCS Series.

[64]  Igal Sason,et al.  Moderate deviations analysis of binary hypothesis testing , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[65]  Masahito Hayashi,et al.  An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.

[66]  Anders Claesson,et al.  Generalized Pattern Avoidance , 2001, Eur. J. Comb..

[67]  Masahito Hayashi,et al.  Finite-length Analysis on Tail probability for Markov Chain and Application to Simple Hypothesis Testing , 2014, 1401.3801.

[68]  Vincent Yan Fu Tan,et al.  Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities , 2014, Found. Trends Commun. Inf. Theory.

[69]  Andrew M. Baxter Refining Enumeration Schemes to Count According to Permutation Statistics , 2014, Electron. J. Comb..

[70]  C. Krattenthaler Lattice Path Enumeration , 2015, 1503.05930.

[71]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[72]  L. V. Rozovsky,et al.  Estimate from Below for Large-Deviation Probabilities of a Sum of Independent Random Variables with Finite Variances , 2002 .

[73]  F. Hiai,et al.  Introduction to Matrix Analysis and Applications , 2014 .

[74]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[75]  H. Nagaoka Strong Converse Theorems in Quantum Information Theory , 2005 .

[76]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[77]  Runyao Duan,et al.  Semidefinite Programming Strong Converse Bounds for Classical Capacity , 2016, IEEE Transactions on Information Theory.

[78]  Kendra Killpatrick,et al.  Wilf Equivalence for the Charge Statistic , 2012, 1204.3121.

[79]  N. R. Chaganty,et al.  Strong Large Deviation and Local Limit Theorems , 1993 .

[80]  Bruce E. Sagan,et al.  Mahonian pairs , 2011, J. Comb. Theory, Ser. A.

[81]  Igal Sason,et al.  Concentration of Measure Inequalities in Information Theory, Communications, and Coding , 2012, Found. Trends Commun. Inf. Theory.

[82]  Elwyn R. Berlekamp,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. II , 1967, Inf. Control..

[83]  Sergi Elizalde Multiple Pattern Avoidance with respect to Fixed Points and Excedances , 2004, Electron. J. Comb..

[84]  Aaron B. Wagner,et al.  Moderate Deviations in Channel Coding , 2012, IEEE Transactions on Information Theory.

[85]  A. Holevo,et al.  On Reliability Function of Quantum Communication Channel , 1997 .

[86]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..

[87]  Marco Tomamichel,et al.  Sphere-packing bound for classical-quantum channels , 2017, 2017 IEEE Information Theory Workshop (ITW).

[88]  Alexandru Nica,et al.  Free random variables , 1992 .

[89]  Vincent Y. F. Tan,et al.  The third-order term in the normal approximation for the AWGN channel , 2014, 2014 IEEE International Symposium on Information Theory.

[90]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[91]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[92]  Eric Babson,et al.  Generalized permutation patterns and a classification of the Mahonian statistics , 2000 .

[93]  Vincent Vajnovszki,et al.  Lehmer code transforms and Mahonian statistics on permutations , 2012, Discret. Math..

[94]  Mario Berta,et al.  Quantum coding with finite resources , 2015, Nature Communications.

[95]  Sergi Elizalde,et al.  Total occurrence statistics on restricted permutations , 2013, 1305.3177.

[96]  Sergi Elizalde,et al.  Fixed Points and Excedances in Restricted Permutations , 2002, Electron. J. Comb..

[97]  Vincent Yan Fu Tan,et al.  A Tight Upper Bound for the Third-Order Asymptotics for Most Discrete Memoryless Channels , 2012, IEEE Transactions on Information Theory.