Science priorities for Mars sample return.

I. Executive Summary 491 I

[1]  J. Head,et al.  Explosive volcanic eruptions on Mars: Tephra and accretionary lapilli formation, dispersal and recognition in the geologic record , 2007 .

[2]  J. Delano Pristine lunar glasses: Criteria, data, and implications , 1986 .

[3]  J. Farmer Thermophiles, early biosphere evolution, and the origin of life on Earth: Implications for the exobiological exploration of Mars , 1998 .

[4]  D. Mckay,et al.  Chemical Weathering and Diagenesis of a Cold Desert Soil from Wright Valley, Antarctica: an Analog of Martian Weathering Processes , 1983 .

[5]  O. Eugster Cosmic-ray Exposure Ages of Meteorites and Lunar Rocks and Their Significance , 2003 .

[6]  H. Wiesmann,et al.  The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics , 2003 .

[7]  D. Bogard,et al.  Martian Gases in an Antarctic Meteorite? , 1983, Science.

[8]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[9]  J. William Schopf,et al.  Earth's earliest biosphere : its origin and evolution , 1983 .

[10]  A. Nier,et al.  Composition and structure of Mars' Upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2 , 1977 .

[11]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[12]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[13]  G. Wasserburg,et al.  International cooperation for Mars exploration and sample return , 1990 .

[14]  J. Farmer Hydrothermal systems: Doorways to early biosphere evolution , 2000 .

[15]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Lilley,et al.  Rapid growth at deep-sea vents , 1994, Nature.

[17]  P. E. Potter,et al.  Mud and Mudstones: Introduction and Overview , 2005 .

[18]  James W. Head,et al.  North polar cap of Mars: Polar layered deposit characterization and identification of a fundamental climate signal , 2005 .

[19]  David E. Shean,et al.  Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers , 2007 .

[20]  Michael E. Zolensky,et al.  Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite , 1988 .

[21]  Barry L. Lutz,et al.  Deuterium on Mars: The Abundance of HDO and the Value of D/H , 1988, Science.

[22]  J. Head,et al.  Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. , 1994 .

[23]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[24]  D. Muhleman,et al.  The 1990 update to strategy for exploration of the inner planets , 1990 .

[25]  H. Klein The Viking biological experiments on Mars , 1978 .

[26]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[27]  Elmar K. Jessberger,et al.  Chemistry and Mineralogy of Comet Halley's Dust , 1997 .

[28]  L. Nittler,et al.  Polymorphism in Presolar Al2O3 Grains from Asymptotic Giant Branch Stars , 2004, Science.

[29]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[30]  H. Klein The Viking mission and the search for life on Mars , 1979 .

[31]  M. Buehler,et al.  Mars Atmospheric Oxidant Sensor (MAOS): An In-Situ Heterogeneous Chemistry Analysis , 2002 .

[32]  G. Fox,et al.  Biohazard potential of putative Martian organisms during missions to Mars. , 2007, Aviation, space, and environmental medicine.

[33]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[34]  John M. Ward,et al.  Martian sub-surface ionising radiation: biosignatures and geology , 2007 .

[35]  David E. Shean,et al.  Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit , 2005 .

[36]  Michael E. Zolensky,et al.  Curation, spacecraft recovery, and preliminary examination for the Stardust mission: A perspective from the curatorial facility , 2008 .

[37]  A. Basilevsky,et al.  Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera , 2004, Nature.

[38]  R. Clayton,et al.  Martian Volatiles: Isotopic Composition, Origin, and Evolution , 2001 .

[39]  James W. Head,et al.  Cold-based Mountain Glaciers on Mars: Western Arsia Mons Fan-shaped Deposits , 2003 .

[40]  Robert O. Pepin,et al.  On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles , 1991 .

[41]  Andrew Pohorille,et al.  The NASA Astrobiology Roadmap. , 2008, Astrobiology.

[42]  S. McLennan,et al.  Production of hydrogen peroxide in Martian and lunar soils , 2007 .

[43]  Colin T. Pillinger,et al.  Xylan - A potential contaminant for lunar samples and Antarctic meteorites , 1992 .

[44]  H. Wiesmann,et al.  The age of the carbonates in martian meteorite ALH84001. , 1999, Science.

[45]  Barbara A. Cohen,et al.  Noble gases in iddingsite from the Lafayette meteorite: Evidence for liquid water on Mars in the last few hundred million years , 2000 .

[46]  W J O'Neil,et al.  The Mars Sample Return Project. , 2000, Acta astronautica.

[47]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[48]  S. Clifford Polar basal melting on Mars , 1987 .

[49]  Andrew Steele,et al.  Observations from a 4-year contamination study of a sample depth profile through Martian meteorite Nakhla. , 2007, Astrobiology.

[50]  L. Leshin,et al.  HYDROGEN ISOTOPE GEOCHEMISTRY OF SNC METEORITES , 1996 .

[51]  S. Ruff Spectral evidence for zeolite in the dust on Mars , 2002 .

[52]  Michael E. Zolensky,et al.  Aqueous alteration of the Nakhla meteorite , 1991 .

[53]  R. Singer Spectral evidence for the mineralogy of high‐albedo soils and dust on Mars , 1982 .

[54]  C. McKay,et al.  The Chemical Reactivity of the Martian Soil and Implications for Future Missions , 1994 .

[55]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[56]  K. Mathew,et al.  Evolutionary trends in volatiles of the nakhlite source region of Mars , 2005 .

[57]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[58]  Andrew Steele,et al.  Science Priorities Related to the Organic Contamination of Martian Landers , 2004 .

[59]  M. Drake,et al.  A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars , 2005 .

[60]  Gerhard Kminek,et al.  The effect of ionizing radiation on the preservation of amino acids on Mars , 2006 .

[61]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[62]  David S. McKay,et al.  Grain size and the evolution of lunar soils. , 1977 .

[63]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[64]  A. Steele,et al.  Investigations into the Contamination of Lunar Return Material. Part 1; Surface Analysis and Imaging Investigations , 2019 .

[65]  A. McEwen,et al.  Meter-Scale Morphology of the North Polar Region of Mars , 2007, Science.

[66]  Mark A. Miller,et al.  Organic Compounds Associated with Carbonate Globules and Rims in the ALH 84001 Meteorite , 1998 .

[67]  J F Bell,et al.  Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.

[68]  M. P. Golombek,et al.  Strategy for the Exploration of Mars , 2000 .

[69]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[70]  G. Kminek,et al.  Putting Together an Exobiology Mission: The ExoMars Example , 2008 .

[71]  Jennifer L. Eigenbrode,et al.  Fossil Lipids for Life-Detection: A Case Study from the Early Earth Record , 2008 .

[72]  James L. Gooding,et al.  Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite , 1993 .

[73]  M. Hecht Chronos: A Journey Through Martian History , 2006 .

[74]  D. Mckay,et al.  Antarctic Dry Valleys and indigenous weathering in Mars meteorites: Implications for water and life on Mars , 2005 .

[75]  Robert B. Leighton,et al.  The Surface of Mars , 2007 .

[76]  A. Treiman Complex petrogenesis of the Nakhla (SNC) meteorite - Evidence from petrography and mineral chemistry , 1990 .

[77]  James W. Head,et al.  Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change , 2006 .

[78]  Luther W. Beegle,et al.  Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps , 2005 .

[79]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[80]  A. J. T. Jull,et al.  Isotopic composition of carbonates in the SNC meteorites, Allan Hills 84001 and Zagami , 1997 .

[81]  C. Pillinger,et al.  Observation and analysis of in situ carbonaceous matter in Nakhla: part II , 2006 .

[82]  M. Wadhwa,et al.  Redox State of Mars' Upper Mantle and Crust from Eu Anomalies in Shergottite Pyroxenes , 2001, Science.

[83]  Jill R. Scott,et al.  Laboratory simulations of prebiotic molecule stability in the jarosite mineral group; end member evaluation of detection and decomposition behavior related to Mars sample return , 2009 .

[84]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[85]  S. McLennan,et al.  The Martian Surface: The sedimentary rock cycle of Mars , 2008 .

[86]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[87]  John D. Rummel,et al.  A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth , 2002 .

[88]  J. Ward,et al.  Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs , 2002, Nature.

[89]  H. Wiesmann,et al.  The Chronology of the Nakhlite, Lafayette: Rb-Sr and Sm-Nd Isotopic Ages , 1998 .

[90]  S. Erard,et al.  Spatial Variations in the Spectral Properties of Bright Regions on Mars , 1993 .

[91]  D. Ming,et al.  Evidence for Montmorillonite or its Compositional Equivalent in Columbia Hills, Mars , 2007 .

[92]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[93]  J. Jones,et al.  Medical Issues for a Human Mission to Mars and Martian Surface Expeditions , 2004 .

[94]  A. Steele,et al.  Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard , 2007 .

[95]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[96]  J. Farmer,et al.  Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. , 1996, Ciba Foundation symposium.

[97]  R. Zare,et al.  Alkylation of polycyclic aromatic hydrocarbons in carbonaceous chondrites , 2005 .

[98]  Michael Bruce Wyatt,et al.  Global geologic context for rock types and surface alteration on Mars , 2004 .

[99]  E. Gibson,et al.  Low-Temperature Carbonate Concretions in the Martian Meteorite ALH84001: Evidence from Stable Isotopes and Mineralogy , 1997, Science.

[100]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[101]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[102]  D. Ming,et al.  Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.

[103]  J. Mustard,et al.  Impact melts and glasses on Mars , 2004 .

[104]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[105]  A. F. C. Haldemann,et al.  Pyroclastic Activity at Home Plate in Gusev Crater, Mars , 2007, Science.

[106]  Mark H. Thiemens,et al.  Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites , 2000, Nature.

[107]  Thomas H. Prettyman,et al.  The presence and stability of ground ice in the southern hemisphere of Mars , 2004 .

[108]  C. Herd,et al.  Petrogenetic linkages among Martian basalts: Implications based on trace element chemistry of olivine , 2007 .

[109]  S. Murchie,et al.  A model for formation of dust, soil, and rock coatings on Mars: Physical and chemical processes on the Martian surface , 2002 .

[110]  Richard V. Morris,et al.  Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars , 2006 .

[111]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[112]  E. Mosley‐Thompson,et al.  Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. , 2001, Environmental microbiology.

[113]  T. Hoering Earth's Earliest Biosphere: Its Origin and Evolution , 1986 .

[114]  A. Zent,et al.  On the thickness of the oxidized layer of the Martian regolith. , 1998, Journal of geophysical research.

[115]  Mary A. Voytek,et al.  Findings of the Mars special regions science analysis group. , 2006, Astrobiology.

[116]  P. Kotula,et al.  Microstructure and thermal history of metal particles in CH chondrites , 2005 .

[117]  Richard M. Ambrosi,et al.  The Mars Hopper: An Impulse-Driven, Long-Range, Long-Lived Mobile Platform Utilizing In Situ Martian Resources , 2001 .

[118]  L. Borg,et al.  The age of the martian meteorite Northwest Africa 1195 and the differentiation history of the shergottites , 2007 .

[119]  Michael Bruce Wyatt,et al.  Constraints on the composition and petrogenesis of the Martian crust , 2003 .

[120]  G. Flynn,et al.  An assessment of the meteoritic contribution to the Martian soil , 1990 .

[121]  D. Fisher Mars' water isotope (D/H) history in the strata of the North Polar Cap: Inferences about the water cycle , 2007 .

[122]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[123]  Harold J. Morowitz,et al.  Annihilation of ecosystems by large asteroid impacts on the early Earth , 1989, Nature.

[124]  K. Konhauser Introduction to geomicrobiology , 2006 .

[125]  Richard V. Morris,et al.  Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars , 2005 .

[126]  James H. Doty,et al.  Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography‐time of flight‐mass spectrometry , 2006 .

[127]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[128]  John A. Wood,et al.  Assessment of Mars science and mission priorities , 2003 .

[129]  M. Velbel The Distribution and Significance of Evaporitic Weathering Products on Antarctic Meteorites , 1988 .

[130]  D. Bogard A reappraisal of the Martian 36Ar/38Ar ratio , 1997 .

[131]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[132]  J. M. Knudsen,et al.  Magnetic Properties Experiments on the Mars Polar Lander , 2001 .

[133]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[134]  L. Borg,et al.  A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites , 2003 .

[135]  C P McKay,et al.  A coupled soil-atmosphere model of H2O2 on Mars. , 1994, Icarus.

[136]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[137]  David C. Catling,et al.  Atmospheric origins of perchlorate on Mars and in the Atacama , 2010 .

[138]  M. Hecht,et al.  Evidence that the reactivity of the martian soil is due to superoxide ions. , 2000, Science.

[139]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .