Improved Image Based Visual Servoing with Parallel Robot

The position regulation problem of an eye-in-hand type of parallel robot based pointing systems (PRBPS) is considered in this paper. A fuzzy logic system is first designed to compensate for the uncertainties of the parallel robot and the uncertainty of the image Jacobian, then a hybrid controller (HC) including the image-based nonlinear controller and the adaptive supervisory fuzzy logic controller (ASFLC) is derived by using the Lyapunov direct method to realize the position regulation (PR). The stability of the closed-loop system in the Lyapunov sense is proven theoretically. The fuzzy scaling matrix is combined with the HC to improve the performance of the control system. The simulation results demonstrate that the PRBPS realizes PR with very good robustness to the parameter uncertainties, and the control input torques and settling time are reduce greatly in the case of large initial feature errors.

[1]  Tsutomu Kimoto,et al.  Manipulator control with image-based visual servo , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[2]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[3]  G. Feng,et al.  An adaptive fuzzy controller based on sliding mode for robot manipulators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[4]  J. E. McInroy,et al.  Precise, fault-tolerant pointing using a Stewart platform , 1999 .

[5]  Robert E. Mahony,et al.  A decoupled image space approach to visual servo control of a robotic manipulator , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[6]  John E. McInroy,et al.  Trajectory Tracking with Parallel Robots Using Low Chattering, Fuzzy Sliding Mode Controller , 2007, J. Intell. Robotic Syst..

[7]  Rafael Kelly,et al.  Stable visual servoing of camera-in-hand robotic systems , 2000 .

[8]  Min Cheol Lee,et al.  The design of sliding mode controller with perturbation observer for a 6-DOF parallel manipulator , 2001, ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570).

[9]  John E. McInroy,et al.  Adaptive sinusoidal disturbance cancellation for precise pointing of Stewart platforms , 2003, IEEE Trans. Control. Syst. Technol..

[10]  François Chaumette,et al.  2 1/2 D visual servoing: a possible solution to improve image-based and position-based visual servoings , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[11]  John E. McInroy,et al.  Nonlinear Image Based Visual Servoing Using Parallel Robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[12]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[13]  João Miguel da Costa Sousa,et al.  Improving visual servoing using fuzzy filters , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[14]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[15]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[16]  C. S. George Lee,et al.  Weighted selection of image features for resolved rate visual feedback control , 1991, IEEE Trans. Robotics Autom..

[17]  Benoit Petitjean,et al.  Active isolation in space truss structures: from concept to implementation , 1999 .

[18]  F. Conticelli,et al.  Nonlinear controllability and stability analysis of adaptive image-based systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[19]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[20]  Yuan Cheng,et al.  Vibration control of Gough-Stewart platform on flexible suspension , 2003, IEEE Trans. Robotics Autom..

[21]  John E. McInroy,et al.  Design and control of flexure jointed hexapods , 2000, IEEE Trans. Robotics Autom..

[22]  Byung Kook Yoo,et al.  Adaptive control of robot manipulator using fuzzy compensator , 2000, IEEE Trans. Fuzzy Syst..

[23]  R. Dillmann,et al.  Active acceleration compensation using a Stewart-platform on a mobile robot , 1997, Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots.

[24]  Leonard S. Haynes,et al.  Six-degree-of-freedom active vibration isolation using a stewart platform mechanism , 1993, J. Field Robotics.

[25]  Zahidul H. Rahman,et al.  Vibration isolation and suppression system for precision payloads in space , 1999 .

[26]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[27]  Hiroyuki Kawai,et al.  Passivity-Based Dynamic Visual Feedback Control for Three-Dimensional Target Tracking: Stability and $L_{2}$-Gain Performance Analysis , 2007, IEEE Transactions on Control Systems Technology.