Normal form theory and nonlinear normal modes: Theoretical settings and applications

These lecture notes are related to the CISM course on ”Modal Analysis of nonlinear Mechanical systems”, held at Udine, Italy, from June 25 to 29, 2012. The key concept at the core of all the lessons given during this week is the notion of Nonlinear Normal Mode (NNM), a theoretical tool allowing one to extend, through some well-chosen assumptions and limitations, the linear modes of vibratory systems, to nonlinear regimes. More precisely concerning these notes, they are intended to show the explicit link between Normal Form theory and NNMs, for the specific case of vibratory systems displaying polynomial type nonlinearities. After a brief introduction reviewing the main concepts for deriving the normal form for a given dynamical system, the relationship between normal form theory and nonlinear normal modes (NNMs) will be the core of the developments. Once the main results presented, application of NNMs to vibration problem where geometric nonlinearity is present, will be highlighted. In particular, the developments of reduced-order models based on NNMs expressed asymptotically with the formalism of real normal form, will be deeply presented.

[1]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[2]  O. Thomas,et al.  Effect of Imperfections and Damping on the Type of Nonlinearity of Circular Plates and Shallow Spherical Shells , 2008 .

[3]  Marco Amabili,et al.  Nonlinear vibrations of circular cylindrical panels , 2005 .

[4]  Michael P. Païdoussis,et al.  A cantilever conveying fluid: coherent modes versus beam modes , 2004 .

[5]  S. A. Tobias Free Undamped Non-Linear Vibrations of Imperfect Circular Disks , 1957 .

[6]  Ali H. Nayfeh,et al.  On the Discretization of Distributed-Parameter Systems with Quadratic and Cubic Nonlinearities , 1997 .

[7]  H. Dulac Solutions d'un système d'équations différentielles dans le voisinage de valeurs singulières , 1912 .

[8]  Ali H. Nayfeh,et al.  On Direct Methods for Constructing Nonlinear Normal Modes of Continuous Systems , 1995 .

[9]  Yi‐Yuan Yu,et al.  Nonlinear Vibrations of Shallow Spherical Shells , 1969 .

[10]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[11]  Christophe Pierre,et al.  Non-linear normal modes and invariant manifolds , 1991 .

[12]  Eric Pesheck,et al.  Reduced order modeling of nonlinear structural systems using nonlinear normal modes and invariant manifolds , 2000 .

[13]  Christophe Pierre,et al.  Normal Modes for Non-Linear Vibratory Systems , 1993 .

[14]  Kimihiko Yasuda,et al.  Nonlinear Forced Oscillations of a Shallow Spherical Shell , 1984 .

[15]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[16]  A. H. Nayfeh,et al.  Non-linear resonances in the forced responses of plates, part 1: Symmetric responses of circular plates , 1975 .

[17]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[18]  M. Païdoussis,et al.  Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction , 2003 .

[19]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[20]  Marco Amabili,et al.  Effect of the geometry on the non-linear vibration of circular cylindrical shells , 2002 .

[21]  G. J. Efstathiades A new approach to the large-deflection vibrations of imperfect circular disks using Galerkin's procedure , 1971 .

[22]  A. Chaigne,et al.  Asymmetric non-linear forced vibrations of free-edge circular plates. Part II: Experiments , 2003 .

[23]  T. K. Varadan,et al.  Nonlinear flexural oscillations of orthotropic shallow spherical shells , 1978 .

[24]  Christophe Pierre,et al.  Nonlinear normal modes for vibratory systems under harmonic excitation , 2005 .

[25]  C. Elphick,et al.  Normal form reduction for time-periodically driven differential equations , 1987 .

[26]  G. Kerschen,et al.  PHYSICAL INTERPRETATION OF THE PROPER ORTHOGONAL MODES USING THE SINGULAR VALUE DECOMPOSITION , 2002 .

[27]  O. Thomas,et al.  Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry , 2006 .

[28]  Marco Amabili,et al.  Non-linear vibrations of doubly curved shallow shells , 2005 .

[29]  Stefan Bilbao,et al.  Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties , 2008 .

[30]  Marco Amabili,et al.  Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: Comparison of POD and asymptotic nonlinear normal modes methods , 2007 .

[31]  Marco Amabili,et al.  Reduced-order models for large-amplitude vibrations of shells including in-plane inertia , 2008 .

[32]  Marco Amabili,et al.  Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections , 2003 .

[33]  Marco Amabili,et al.  Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures , 2006 .

[34]  M. P. Païdoussis,et al.  Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method , 2003 .

[35]  B. Feeny,et al.  On the physical interpretation of proper orthogonal modes in vibrations , 1998 .

[36]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[37]  Cyril Touzé,et al.  Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes , 2004 .

[38]  M. P. Païdoussis,et al.  NON-LINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID, PART II: LARGE-AMPLITUDE VIBRATIONS WITHOUT FLOW , 1999 .

[39]  Ali H. Nayfeh,et al.  On Nonlinear Modes of Continuous Systems , 1994 .

[40]  Cyril Touzé,et al.  ASYMMETRIC NON-LINEAR FORCED VIBRATIONS OF FREE-EDGE CIRCULAR PLATES. PART 1: THEORY , 2002 .

[41]  D. Jiang Nonlinear modal analysis based on invariant manifolds - Application to rotating blade systems , 2004 .

[42]  Cyril Touzé,et al.  Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance , 2005 .

[43]  R. M. Evan-Iwanowski,et al.  Dynamic response and stability of shallow spherical shells subject to time-dependent loading. , 1966 .

[44]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[45]  M. P. Païdoussis,et al.  NONLINEAR VIBRATIONS OF SIMPLY SUPPORTED, CIRCULAR CYLINDRICAL SHELLS, COUPLED TO QUIESCENT FLUID , 1998 .

[46]  G. Iooss,et al.  Topics in bifurcation theory and applications , 1999 .

[47]  Cyril Touzé A normal form approach for nonlinear normal modes , 2003 .

[48]  Jean-François Mercier,et al.  On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems , 2013 .

[49]  T. Kármán Festigkeitsprobleme im Maschinenbau , 1907 .

[50]  Claude-Henri Lamarque,et al.  An upper bound for validity limits of asymptotic analytical approaches based on normal form theory , 2012 .

[51]  Jamal F. Nayfeh,et al.  On methods for continuous systems with quadratic and cubic nonlinearities , 1992 .

[52]  Marco Amabili,et al.  Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method , 2006 .

[53]  Claude-Henri Lamarque,et al.  Analysis of non-linear dynamical systems by the normal form theory , 1991 .

[54]  M. Sathyamoorthy Vibrations of Moderately Thick Shallow Spherical Shells at Large Amplitudes , 1994 .

[55]  Noboru Yamaki,et al.  Influence of Large Amplitudes on Flexural Vibrations of Elastic Plates , 1961 .

[56]  Paulo B. Gonçalves,et al.  Axisymmetric Vibrations of Imperfect Shallow Spherical Caps Under Pressure Loading , 1994 .