Stabilization of Switched Linear Systems with Multiple Time-Varying Delays

This paper considers the problem of stabilization via state feedback and/or state-based switching for switched linear systems with multiple time-varying delays. The main contribution of this paper is that we proved the switched linear delay system will be stabilizable via state feedback and/or switching for an appropriate upper bound of delays if the corresponding (closed-loop) system with zero delays has a Hurwitz stable convex combination. Particularly, the maximal allowable upper bound of delays can be obtained from some feasible linear matrix inequalities (LMIs)

[1]  Masayoshi Tomizuka,et al.  Learning hybrid force and position control of robot manipulators , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[2]  Takehiro Mori,et al.  An Extension of a Class of Sytems That Have a Common Lyapunov Function , 1997 .

[3]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[4]  Tatsushi Ooba,et al.  Two conditions concerning common quadratic Lyapunov functions for linear systems , 1997, IEEE Trans. Autom. Control..

[5]  R. Decarlo,et al.  Construction of piecewise Lyapunov functions for stabilizing switched systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[6]  Guangming Xie,et al.  Controllability and stabilizability of switched linear-systems , 2003, Syst. Control. Lett..

[7]  A. Morse,et al.  Stability of switched systems: a Lie-algebraic condition ( , 1999 .

[8]  Pravin Varaiya,et al.  Smart cars on smart roads: problems of control , 1991, IEEE Trans. Autom. Control..

[9]  G. Zhai Quadratic stabilizability of discrete-time switched systems via state and output feedback , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[10]  Raymond A. DeCarlo,et al.  Switched Controller Synthesis for the Quadratic Stabilisation of a Pair of Unstable Linear Systems , 1998, Eur. J. Control.

[11]  T. Andô,et al.  Set of matrices with common Lyapunov solution , 2001 .

[12]  Zhengguo Li,et al.  Stabilization of a class of switched systems via designing switching laws , 2001, IEEE Trans. Autom. Control..

[13]  H. Khalil On the existence of positive diagonal P such that PA + A^{T}P l 0 , 1982 .

[14]  Daizhan Cheng,et al.  On quadratic Lyapunov functions , 2003, IEEE Trans. Autom. Control..

[15]  S. M. Williams,et al.  Adaptive frequency domain control of PWM switched power line conditioner , 1990 .

[16]  K. Narendra,et al.  A common Lyapunov function for stable LTI systems with commuting A-matrices , 1994, IEEE Trans. Autom. Control..

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Long Wang,et al.  On Controllability of Switched Linear Systems , 2002, IEEE Transactions on Automatic Control.

[19]  Izchak Lewkowicz,et al.  Convex invertible cones of state space systems , 1997, Math. Control. Signals Syst..

[20]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[21]  Daniel Liberzon,et al.  Benchmark Problems in Stability and Design of Switched Systems , 1999 .

[22]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[23]  Masayoshi Tomizuka,et al.  Learning hybrid force and position control of robot manipulators , 1993, IEEE Trans. Robotics Autom..

[24]  Yasuyuki Funahashi,et al.  Stability robustness for linear state space models—a Lyapunov mapping approach , 1997 .