Examination of phonon deformation potentials for accurate strain measurements in silicon–germanium alloys with the whole composition range by Raman spectroscopy

The phonon deformation potentials (PDPs), p and q, of Si1−xGex with the whole range of the Ge concentration x were examined in detail in pursuit of accurate strain measurements by Raman spectroscopy. An oil-immersion Raman technique was adopted to extract the PDPs of Si1−xGex, in which a complex sample preparation process or a stress-introduction device is not necessary. The strain-shift coefficients bLO and bTO, which can be calculated using the obtained PDPs, were compared with the values in the literature, and we suggested which values were best for application to accurate strain measurements. Ab initio calculation was also performed to understand the behavior of the PDPs throughout the whole range of x in Si1−xGex.

[1]  I. Wolf Relation between Raman frequency and triaxial stress in Si for surface and cross-sectional experiments in microelectronics components , 2015 .

[2]  A. Ogura,et al.  Evaluation of Anisotropic Biaxial Stress in Si1-XGex/Ge Mesa-Structure by Oil-Immersion Raman Spectroscopy , 2015 .

[3]  T. Irisawa,et al.  Invited) Mobility Enhancement of Uniaxially Strained Germanium Nanowire MOSFETs , 2014 .

[4]  A. Ogura,et al.  Electrical field analysis of metal‐surface plasmon resonance using a biaxially strained Si substrate , 2014 .

[5]  Jean-Michel Hartmann,et al.  Germanium content and strain in Si1−xGex alloys characterized by Raman spectroscopy , 2014 .

[6]  Hideki Hashimoto,et al.  Measurement of temperature-dependent stress in copper-filled silicon vias using polarized Raman spectroscopy , 2013 .

[7]  A. Ogura,et al.  Investigation of Phonon Deformation Potentials in Si1-xGex by Oil-Immersion Raman Spectroscopy , 2012 .

[8]  T. Tezuka,et al.  Characterization of Anisotropic Strain Relaxation after Mesa Isolation for Strained SGOI and SiGe/Si Structure with Newly Developed High-NA and Oil-Immersion Raman Method , 2012, 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM).

[9]  S. Kawata,et al.  Mapping the "forbidden" transverse-optical phonon in single strained silicon (100) nanowire. , 2011, Nano letters.

[10]  A. Ogura,et al.  Improvement of Spatial Resolution in Raman Spectroscopy Selecting Measurement Area by Opaque Material Deposition , 2011 .

[11]  K. Omote High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  T. Tada,et al.  Observation of the forbidden doublet optical phonon in Raman spectra of strained Si for stress analysis , 2010 .

[13]  S. Yamakawa,et al.  Channel strain analysis in high-performance damascene-gate p-metal-oxide-semiconductor field effect transistors using high-spatial resolution Raman spectroscopy , 2010 .

[14]  T. Tada,et al.  Study of stress distribution in a cleaved Si shallow trench isolation structure using confocal micro-Raman system , 2010 .

[15]  A. Ogura,et al.  Transverse-optical phonons excited in Si using a high-numerical-aperture lens , 2010 .

[16]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[17]  N. Nagashima,et al.  Channel-Stress Enhancement Characteristics for Scaled pMOSFETs by Using Damascene Gate With Top-Cut Compressive Stress Liner and eSiGe , 2009, IEEE Transactions on Electron Devices.

[18]  K. Nakagawa,et al.  Introduction of Uniaxial Strain into Si/Ge Heterostructures by Selective Ion Implantation , 2008 .

[19]  V. Torres,et al.  Ab-initio vibrational properties of SiGe alloys , 2008 .

[20]  S. Sanguinetti,et al.  Phonon strain shift coefficients in Si1−xGex alloys , 2008 .

[21]  A. Goñi,et al.  Composition dependence of the phonon strain shift coefficients of SiGe alloys revisited , 2008 .

[22]  T. Mitani,et al.  Raman investigation of strain in Si∕SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands , 2006 .

[23]  Satoshi Tanaka,et al.  UV-Raman Spectroscopy System for Local and Global Strain Measurements in Si , 2005 .

[24]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[25]  D. Paul Si/SiGe heterostructures: from material and physics to devices and circuits , 2004 .

[26]  Astronomy,et al.  Metric tensor formulation of strain in density-functional perturbation theory , 2004, cond-mat/0409269.

[27]  X. Gonze,et al.  Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory , 2004, cond-mat/0409067.

[28]  Noritaka Usami,et al.  On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates , 2004 .

[29]  K. Nakagawa,et al.  In-plane strain fluctuation in strained-Si/SiGe heterostructures , 2003 .

[30]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[31]  S. Zollner,et al.  Visible and ultraviolet Raman scattering studies of Si1−xGex alloys , 2000 .

[32]  J. Menéndez,et al.  Polarized off-axis Raman spectroscopy: A technique for measuring stress tensors in semiconductors , 1999 .

[33]  A. Sood,et al.  In situ Raman monitoring of ultrathin Ge films , 1998 .

[34]  Surya R. Kalidindi,et al.  Determination of unknown stress states in silicon wafers using microlaser Raman spectroscopy , 1997 .

[35]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[36]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[37]  Ingrid De Wolf,et al.  Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment , 1996 .

[38]  I. Wolf Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits , 1996 .

[39]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[40]  Atkinson,et al.  Stresses in strained GeSi stripes: Calculation and determination from Raman measurements. , 1995, Physical review. B, Condensed matter.

[41]  G. Katagiri,et al.  Characterization of anisotropic stress around Si trenches by polarized Raman spectroscopy , 1995 .

[42]  F. H. Dacol,et al.  Measurements of alloy composition and strain in thin GexSi1−x layers , 1994 .

[43]  Fred H. Pollak,et al.  Effect of static uniaxial stress on the Raman spectrum of silicon , 1993 .

[44]  Lockwood,et al.  Strain-shift coefficients for phonons in Si1-xGex epilayers on silicon. , 1992, Physical review. B, Condensed matter.

[45]  M. Cardona,et al.  Piezo-Raman measurements and anharmonic parameters in silicon and diamond. , 1990, Physical review. B, Condensed matter.

[46]  A. Pinczuk,et al.  Raman scattering from GexSi1−x/Si strained‐layer superlattices , 1984 .

[47]  H. Schlegel,et al.  Optimization of equilibrium geometries and transition structures , 1982 .

[48]  Meera Chandrasekhar,et al.  Effects of interband excitations on Raman phonons in heavily doped n − Si , 1978 .

[49]  J. Lannin Vibrational and Raman-scattering properties of crystalline Ge 1 − x Si x alloys , 1977 .

[50]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[51]  W. J. Brya Raman scattering in GeSi alloys , 1973 .

[52]  Fred H. Pollak,et al.  Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors , 1972 .

[53]  Alexei A. Maradudin,et al.  A lattice theory of morphic effects in crystals of the diamond structure , 1970 .

[54]  J. Parker,et al.  Raman Scattering by Local Modes in Germanium-Rich Silicon-Germanium Alloys , 1966 .

[55]  J. Dismukes,et al.  Lattice Parameter and Density in Germanium-Silicon Alloys1 , 1964 .

[56]  R. Loudon The Raman effect in crystals , 1964 .

[57]  W. Brantley Calculated elastic constants for stress problems associated with semiconductor devices , 1973 .