Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix

Computational problem certificates are additional data structures for each output, which can be used by a---possibly randomized---verification algorithm that proves the correctness of each output. In this paper, we give an algorithm that computes a certificate for the minimal polynomial of sparse or structured matrices over an abstract field, of sufficiently large cardinality, whose Monte Carlo verification complexity requires a single matrix-vector multiplication and a linear number of extra field operations. We also propose a novel preconditioner that ensures irreducibility of the characteristic polynomial of the generically preconditioned matrix. This preconditioner takes linear time to be applied and uses only two random entries. We then combine these two techniques to give algorithms that compute certificates for the determinant, and thus for the characteristic polynomial, whose Monte Carlo verification complexity is therefore also linear.

[1]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[2]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.

[3]  Yael Tauman Kalai,et al.  Improved Delegation of Computation using Fully Homomorphic Encryption , 2010, IACR Cryptol. ePrint Arch..

[4]  Yael Tauman Kalai,et al.  Delegating computation: interactive proofs for muggles , 2008, STOC.

[5]  Rosario Gennaro,et al.  Publicly verifiable delegation of large polynomials and matrix computations, with applications , 2012, IACR Cryptol. ePrint Arch..

[6]  Ronald Cramer,et al.  Modular Design of Secure yet Practical Cryptographic Protocols , 1997 .

[7]  Yuval Ishai,et al.  Using Fully Homomorphic Hybrid Encryption to Minimize Non-interative Zero-Knowledge Proofs , 2015, Journal of Cryptology.

[8]  Craig Gentry,et al.  Pinocchio: Nearly Practical Verifiable Computation , 2013, 2013 IEEE Symposium on Security and Privacy.

[9]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[10]  Rusins Freivalds,et al.  Fast Probabilistic Algorithms , 1979, MFCS.

[11]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[12]  Jacob T. Schwartz Probabilistic algorithms for verification of polynomial identities (invited) , 1979, EUROSAM.

[13]  Victor Y. Pan,et al.  Processor efficient parallel solution of linear systems over an abstract field , 1991, SPAA '91.

[14]  G. Villard Computing the Frobenius Normal Form of a Sparse Matrix , 2000 .

[15]  Gilles Villard,et al.  Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.

[16]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[17]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[18]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[19]  B. D. Saunders,et al.  Efficient matrix preconditioners for black box linear algebra , 2002 .

[20]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[21]  Erich Kaltofen,et al.  Essentially optimal interactive certificates in linear algebra , 2014, ISSAC.

[22]  Erich Kaltofen,et al.  On randomized Lanczos algorithms , 1997, ISSAC.

[23]  Guido Bertoni,et al.  Sponge-Based Pseudo-Random Number Generators , 2010, CHES.

[24]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[25]  Erich Kaltofen,et al.  On the complexity of computing determinants , 2001, computational complexity.

[26]  Morris J. Dworkin,et al.  SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions , 2015 .

[27]  Justin Thaler,et al.  Time-Optimal Interactive Proofs for Circuit Evaluation , 2013, CRYPTO.

[28]  Bin Li,et al.  Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..

[29]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[30]  Erich Kaltofen,et al.  Quadratic-time certificates in linear algebra , 2011, ISSAC '11.