AVERAGE-DISTANCE PROBLEM FOR PARAMETERIZED CURVES

We consider approximating a measure by a parameterized curve subject to length penalization. That is for a given finite compactly supported measure μ , with \hbox{$\mu\left(\R^d\right)>0$} for p ≥ 1 and λ > 0 we consider the functional \begin{equation} E(\gm) = \int_{\R^d} d(x, \Gamma_\gamma)^p {\rm d}\mu(x) + \lambda \,\text{Length}(\gamma) \end{equation} E ( γ ) = ∫ R d d ( x, Γ γ ) p d μ ( x ) + λ Length ( γ ) where γ : I → ℝ d , I is an interval in ℝ, Γ γ = γ ( I ), and d ( x, Γ γ ) is the distance of x to Γ γ . The problem is closely related to the average-distance problem, where the admissible class are the connected sets of finite Hausdorff measure ℋ 1 , and to (regularized) principal curves studied in statistics. We obtain regularity of minimizers in the form of estimates on the total curvature of the minimizers. We prove that for measures μ supported in two dimensions the minimizing curve is injective if p ≥ 2 or if μ has bounded density. This establishes that the minimization over parameterized curves is equivalent to minimizing over embedded curves and thus confirms that the problem has a geometric interpretation.

[1]  Dejan Slepcev,et al.  Properties of Minimizers of Average-Distance Problem via Discrete Approximation of Measures , 2013, SIAM J. Math. Anal..

[2]  Giuseppe M. Buttazzo,et al.  A Model for the Optimal Planning of an Urban Area , 2005, SIAM J. Math. Anal..

[3]  Bernhard Schölkopf,et al.  Regularized Principal Manifolds , 1999, J. Mach. Learn. Res..

[4]  Eugene Stepanov,et al.  Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem , 2003 .

[5]  É. Oudet,et al.  Optimal Transportation Problems with Free Dirichlet Regions , 2002 .

[6]  R. Tibshirani Principal curves revisited , 1992 .

[7]  T. Hastie,et al.  Principal Curves , 2007 .

[8]  F. Hwang,et al.  The Steiner Tree Problem , 2012 .

[9]  A. Mennucci,et al.  Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds , 2002, math/0201296.

[10]  Stationary configurations for the average distance functional and related problems , 2014, 1401.0394.

[11]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[12]  IItevor Hattie Principal Curves and Surfaces , 1984 .

[13]  Antoine About the regularity of average distance minimizers in R 2 . , 2009 .

[14]  K. Chao,et al.  Steiner Minimal Trees , 2005 .

[15]  Werner Stuetzle,et al.  Geometric Properties of Principal Curves in the Plane , 1996 .

[16]  D. Slepčev Counterexample to regularity in average-distance problem , 2014 .

[17]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[18]  Hans Jürgen Prömel,et al.  The Steiner Tree Problem , 2002 .

[19]  A. Lemenant A presentation of the average distance minimizing problem , 2012 .

[20]  Eugene Stepanov,et al.  Optimal Urban Networks via Mass Transportation , 2008 .

[21]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[22]  Adam Krzyzak,et al.  Learning and Design of Principal Curves , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Giuseppe Buttazzo,et al.  Optimal Pricing Policies for Public Transportation Networks , 2006, SIAM J. Optim..

[24]  Giuseppe M. Buttazzo,et al.  A Mass Transportation Model for the Optimal Planning of an Urban Region , 2009, SIAM Rev..

[25]  Paolo Tilli,et al.  Blow-up of optimal sets in the irrigation problem , 2005 .

[26]  E. Stepanov,et al.  Qualitative Properties of Maximum Distance Minimizers and Average Distance Minimizers in Rn , 2004 .