Reasoning About and Optimizing Distributed Parameter Physical Systems Using Influence Graphs

We develop the influence graph mechanism for reasoning about and optimizing decentralized controls for distributed parameter physical systems. Distributed parameter systems, such as air flow around an airplane wing, temperature over a semiconductor wafer, and noise from a photocopy machine, are common physical phenomena. The influence graph mechanism encodes the structural dependency information in a distributed parameter system and exploits the information to (1) alleviate redundant computation and (2) reduce communication and support cooperation among local control processes. Using the mechanism, we obtained a dramatic computational speed-up in optimizing control design for a distributed temperature field.

[1]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[2]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[3]  Benjamin Kuipers,et al.  Model Decomposition and Simulation: A Component Based Qualitative Simulation Algorithm , 1997, AAAI/IAAI.

[4]  Michael Athans,et al.  Survey of decentralized control methods for large scale systems , 1978 .

[5]  E. Bradley,et al.  Phase-space control system design , 1993, IEEE Control Systems.

[6]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[7]  Charalabos C. Doumanidis,et al.  In-process control in thermal rapid prototyping , 1997 .

[8]  Michael Athans,et al.  Survey of Decentralized Control Methods , 1975 .

[9]  Chris Bailey-Kellogg,et al.  Spatial Aggregation: Language and Applications , 1996, AAAI/IAAI, Vol. 1.

[10]  O. Widlund Domain Decomposition Algorithms , 1993 .

[11]  Kenneth D. Forbus,et al.  Qualitative Spatial Reasoning: The Clock Project , 1991, Artif. Intell..

[12]  D. Bertsekas,et al.  Adaptive aggregation methods for infinite horizon dynamic programming , 1989 .

[13]  Monika Lundell A Qualitative Model of Physical , 1996 .

[14]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[15]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[16]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[17]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[18]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artificial Intelligence.

[19]  Bill Millar,et al.  Automated Decomposition of Model-based Learning Problems , 1996 .

[20]  P. Pandurang Nayak,et al.  Immobile Robots AI in the New Millennium , 1996, AI Mag..

[21]  Monika Lundell,et al.  A Qualitative Model of Physical Fields , 1996, AAAI/IAAI, Vol. 2.

[22]  Satya N. Atluri,et al.  Computational heat transfer , 1986 .

[23]  Andrew W. Moore,et al.  The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces , 2004, Machine Learning.

[24]  中園 薫 A Qualitative Physics Based on Confluences , 1986 .

[25]  Feng Zhao,et al.  Spatial Aggregation: Theory and Applications , 1996, J. Artif. Intell. Res..