Lattice-based immersive visualization

The sizes of data are increasing at a very rapid pace in many applications, including medical visualization, physical simulations and industrial scanning. Some of this growth is not only due to the development of high resolution medical and industrial scanners, but also due to the wide availability of high performance graphics processing units (GPUs) which allow for the interactive rendering of large datasets. However, the increase of problem sizes has generally outpaced the increase of onboard GPU memory. At the same time, the resolution of the traditional display systems has not improved significantly compared to the exponential growth of computing power. We have developed a comprehensive approach that tackles the efficiency of the data representation through lattice-based techniques, as well as the visualization capabilities for exploring that data. We have constructed the Immersive Cabin and the Reality Deck facilities, along with a set of visualization techniques, to address the challenge of growing data sizes. In terms of sampling lattices, we have developed a Computational Fluid Dynamics (CFD) simulation framework based on the lattice Boltzmann method and using optimal sampling lattices. Our focus is specifically on the Face-centered Cubic lattice (FCC), which can achieve a stable simulation with only 13 lattice velocities while at the same time improving the sampling efficiency compared to using the traditional Cartesian grid. We demonstrate the resulting fD3Q13 LBM model for use in highly interactive smoke dispersion simulations. The simulation code is coupled with our visualization framework, which includes a high-performance volume renderer and support for virtual reality systems. The volume rendering is further enhanced with a novel LOD scheme for large volume data that allows for mixing the optimal sampling lattices in adjacent levels of the hierarchy with a computationally cheap indexing function. We have developed a visualization framework for the Immersive Cabin which supports the traditional virtual reality components, such as distributed rendering, stereo, tracking, rigid-body physics and sound. The lattice-based visualization and simulation techniques, including the support for mixed-lattice hierarchies, are integrated in the framework and can be combined with the mesh rendering and the rigid-body physics simulation. Based on our experience in the Immersive Cabin, we have designed and constructed the Reality Deck, which is the world's first 1.5 gigapixel immersive display. The Reality Deck contains 416 high resolution LCD monitors in a 4-wall surround layout, and similarly to the Immersive Cabin, uses a unique automatic door that is also a display surface. The graphics are generated on an 18-node cluster with 24 displays connected to each node using the AMD Eyefinity technology. We have extended the Immersive Cabin visualization framework to support the Reality Deck and developed a new gigapixel image renderer targeted at scientific and immersive visualization. We have developed a set of visualization techniques for the exploration of large and complex data in both of our facilities. Conformal Visualization is a novel retargeting approach for partially-enclosed VR environments, such as the Immersive Cabin and the Reality Deck, to allow for the complete visualization of the data even when display surfaces are missing. Our technique uses conformal mapping to ensure that shape is preserved locally under the transformation and we demonstrate its use for the visualization of both mesh and lattice data. In our Frameless Visualization technique, the traditional framebuffer is replaced with reconstruction from a stream of rendered samples. This approach allows smooth user interaction even when rendering on a gigapixel display, such as the Reality Deck, or when using computationally expensive visualization algorithms. Our system generates low-latency image samples using an optimal sampling latticein the 2D+time space, as well as importance-driven higher quality samples. Finally, we have developed the Infinite Canvas visualization technique for horizontally enclosed visual environments. As the user moves through the physical space of the facility, the graphics outside of the field of view are updated to create the illusion of an infinite continuous canvas. The Infinite Canvas has been used for the visual exploration of gigapixel datasets that are an order of magnitude larger than the surface area of the Reality Deck, including very large image collections.

[1]  Henry Fuchs,et al.  Frameless rendering: double buffering considered harmful , 1994, SIGGRAPH.

[2]  Feng Qiu,et al.  Colonoscopy simulation , 2007, SPIE Medical Imaging.

[3]  Markus Hadwiger,et al.  Smooth Mixed-Resolution GPU Volume Rendering , 2008, VG/PBG@SIGGRAPH.

[4]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[5]  Ladd,et al.  Lattice-boltzmann model with sub-grid-scale boundary conditions , 2000, Physical review letters.

[6]  Characteristics of laminar flow past a sphere in uniform shear , 2005 .

[7]  Timo Ropinski,et al.  A GPU-Supported Lossless Compression Scheme for Rendering Time-Varying Volume Data , 2010, VG@Eurographics.

[8]  Cláudio T. Silva,et al.  Hardware-assisted visibility sorting for unstructured volume rendering , 2005, IEEE Transactions on Visualization and Computer Graphics.

[9]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[10]  Feng Qiu,et al.  Zippy: A Framework for Computation and Visualization on a GPU Cluster , 2008, Comput. Graph. Forum.

[11]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[12]  Hans-Peter Seidel,et al.  Stackless KD‐Tree Traversal for High Performance GPU Ray Tracing , 2007, Comput. Graph. Forum.

[13]  Dieter Schmalstieg,et al.  Multi-Frame Rate Volume Rendering , 2010, EGPGV@Eurographics.

[14]  Thomas Strothotte,et al.  Camera textures , 2006, GRAPHITE '06.

[15]  Carlo H. Séquin,et al.  Tapestry: an efficient mesh-based display representation for interactive rendering , 2001 .

[16]  Alireza Entezari,et al.  The Lattice-Boltzmann Method on Optimal Sampling Lattices , 2009, IEEE Transactions on Visualization and Computer Graphics.

[17]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, SIGGRAPH '04.

[18]  Dimitri Van De Ville,et al.  High‐Quality Volumetric Reconstruction on Optimal Lattices for Computed Tomography , 2009, Comput. Graph. Forum.

[19]  Klaus Mueller,et al.  Visual Simulation of Heat Shimmering and Mirage , 2007, IEEE Transactions on Visualization and Computer Graphics.

[20]  Dimitri Van De Ville,et al.  Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Renato Pajarola,et al.  Equalizer: A Scalable Parallel Rendering Framework , 2008, IEEE Transactions on Visualization and Computer Graphics.

[22]  Emmanuel Pietriga,et al.  Looking behind bezels: french windows for wall displays , 2012, AVI.

[23]  Klaus Mueller,et al.  Dispersion simulation and visualization for urban security , 2004, IEEE Visualization 2004.

[24]  Vid Petrovic,et al.  The future of the CAVE , 2011 .

[25]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[26]  Olivier Bau,et al.  Representation-Independent In-Place Magnification with Sigma Lenses , 2010, IEEE Transactions on Visualization and Computer Graphics.

[27]  Mel Slater,et al.  Taking steps: the influence of a walking technique on presence in virtual reality , 1995, TCHI.

[28]  Deborah Silver,et al.  Illustrative Deformation for Data Exploration , 2007, IEEE Transactions on Visualization and Computer Graphics.

[29]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[30]  Theoretical analysis of flow passing a single sphere moving in a micro–tube , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Matthias Trapp,et al.  Generalization of Single-Center Projections Using Projection Tile Screens , 2008, VISIGRAPP.

[32]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[33]  George Drettakis,et al.  Enhancing and Optimizing the Render Cache , 2002, Rendering Techniques.

[34]  J. Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, SIGGRAPH 2007.

[35]  Bin Zhang,et al.  Enclosed Five-Wall Immersive Cabin , 2008, ISVC.

[36]  Baining Guo,et al.  Non‐Linear Beam Tracing on a GPU , 2011, Comput. Graph. Forum.

[37]  Markus Hadwiger,et al.  Real‐Time Ray‐Casting and Advanced Shading of Discrete Isosurfaces , 2005, Comput. Graph. Forum.

[38]  Hong Qin,et al.  Surface matching using consistent pants decomposition , 2008, SPM '08.

[39]  Markus Hadwiger,et al.  Perspective Isosurface and Direct Volume Rendering for Virtual Endoscopy Applications , 2006, EuroVis.

[40]  Rui Wang,et al.  GPU_Accelerated Render Cache , 2012 .

[41]  Ramsay Dyer,et al.  Linear and cubic box splines for the body centered cubic lattice , 2004, IEEE Visualization 2004.

[42]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[43]  Dimitri Van De Ville,et al.  Efficient volume rendering on the body centered cubic lattice using box splines , 2010, Comput. Graph..

[44]  Wei Zeng,et al.  Computing Teichmuller Shape Space , 2009, IEEE Transactions on Visualization and Computer Graphics.

[45]  Klaus Mueller,et al.  The magic volume lens: an interactive focus+context technique for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[46]  Philip L. Bowers,et al.  INTRODUCTION TO CIRCLE PACKING: A REVIEW , 2008 .

[47]  Arie E. Kaufman,et al.  Lattice-based flow field modeling , 2004, IEEE Transactions on Visualization and Computer Graphics.

[48]  Shiyi Chen,et al.  A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows , 1994, comp-gas/9401004.

[49]  Jason Lawrence,et al.  An improved shading cache for modern GPUs , 2008, GH '08.

[50]  U. Behrens,et al.  Adding shadows to a texture-based volume renderer , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[51]  Klaus Mueller,et al.  Lattice-Based Volumetric Global Illumination , 2007, IEEE Transactions on Visualization and Computer Graphics.

[52]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[53]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[54]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[55]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[56]  Jörg Peters,et al.  Box Spline Reconstruction On The Face-Centered Cubic Lattice , 2008, IEEE Transactions on Visualization and Computer Graphics.

[57]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  Lukas Mroz,et al.  STEPS - an application for simulation of transsphenoidal endonasal pituitary surgery , 2004, IEEE Visualization 2004.

[59]  Falko Kuester,et al.  CGLX: A Scalable, High-Performance Visualization Framework for Networked Display Environments , 2011, IEEE Transactions on Visualization and Computer Graphics.

[60]  Dirk Bartz,et al.  Virtual voyage: interactive navigation in the human colon , 1997, SIGGRAPH.

[61]  Arie E. Kaufman,et al.  Object voxelization by filtering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[62]  Jonas Latt Choice of units in lattice Boltzmann simulations , 2008 .

[63]  Alireza Entezari,et al.  Optimal sampling lattices and trivariate box splines , 2007 .

[64]  Rik Van de Walle,et al.  Accelerating Virtual Texturing Using CUDA , 2010, GPU Pro.

[65]  Z. Feng,et al.  Hydrodynamic force on spheres in cylindrical and prismatic enclosures , 2002 .

[66]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[67]  Hiroo Iwata,et al.  Path Reproduction Tests Using a Torus Treadmill , 1999, Presence.

[68]  Elmar Eisemann,et al.  Single-pass GPU solid voxelization for real-time applications , 2008, Graphics Interface.

[69]  Ivan Poupyrev,et al.  3D User Interfaces: Theory and Practice , 2004 .

[70]  Benjamin Watson,et al.  Adaptive frameless rendering , 2005, EGSR '05.

[71]  Wei Zeng,et al.  Supine and Prone Colon Registration Using Quasi-Conformal Mapping , 2010, IEEE Transactions on Visualization and Computer Graphics.

[72]  Eduard Gröller,et al.  Efficient reconstruction from non-uniform point sets , 2008, The Visual Computer.

[73]  A. James Stewart,et al.  Multiresolution sphere packing tree: a hierarchical multiresolution 3D data structure , 2008, SPM '08.

[74]  Andrew Hogue,et al.  A vision-based head tracking system for fully immersive displays , 2003, IPT/EGVE.

[75]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[76]  Robert L. Cook,et al.  The Reyes image rendering architecture , 1987, SIGGRAPH.

[77]  Wei Shyy,et al.  Lattice Boltzmann Method for 3-D Flows with Curved Boundary , 2000 .

[78]  Ulrich Rüde,et al.  Free Surface Lattice-Boltzmann fluid simulations with and without level sets , 2004, VMV.

[79]  P. Milgram,et al.  A Taxonomy of Mixed Reality Visual Displays , 1994 .

[80]  Ye Zhao,et al.  Flow simulation with locally-refined LBM , 2007, SI3D.

[81]  Qian Liu,et al.  Author's Personal Copy Future Generation Computer Systems the Optiportal, a Scalable Visualization, Storage, and Computing Interface Device for the Optiputer , 2022 .

[82]  Markus H. Gross,et al.  Wavelet turbulence for fluid simulation , 2008, ACM Trans. Graph..

[83]  Vlastimil Havran,et al.  Ray Tracing on a GPU with CUDA – Comparative Study of Three Algorithms , 2010 .

[84]  D. d'Humières,et al.  Thirteen-velocity three-dimensional lattice Boltzmann model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[86]  Sylvain Lefebvre,et al.  GigaVoxels: ray-guided streaming for efficient and detailed voxel rendering , 2009, I3D '09.

[87]  Jim X. Chen,et al.  Nonlinear perspective projections and magic lenses: 3D view deformation , 2005, IEEE Computer Graphics and Applications.

[88]  A. Dachman,et al.  CT colonography: the next colon screening examination? , 2000, Radiology.

[89]  T. Chan,et al.  Brain Mapping with the Ricci Flow Conformal Parameterization and Multivariate Statistics on Deformation Tensors , 2008 .

[90]  I. Wald,et al.  On building fast kd-Trees for Ray Tracing, and on doing that in O(N log N) , 2006, 2006 IEEE Symposium on Interactive Ray Tracing.

[91]  Xianfeng Gu,et al.  Discrete Surface Ricci Flow , 2008, IEEE Transactions on Visualization and Computer Graphics.

[92]  Bernd Hamann,et al.  A survey and performance analysis of software platforms for interactive cluster-based multi-screen rendering , 2003, IPT/EGVE.

[93]  Victoria Interrante,et al.  Seven League Boots: A New Metaphor for Augmented Locomotion through Moderately Large Scale Immersive Virtual Environments , 2007, 2007 IEEE Symposium on 3D User Interfaces.

[94]  P. Lallemand,et al.  Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Eduard Gröller,et al.  Optimal regular volume sampling , 2001, Proceedings Visualization, 2001. VIS '01..

[96]  Shi-Min Hu,et al.  Optimal Surface Parameterization Using Inverse Curvature Map , 2008, IEEE Transactions on Visualization and Computer Graphics.

[97]  V. C. Patel,et al.  Flow past a sphere up to a Reynolds number of 300 , 1999, Journal of Fluid Mechanics.

[98]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[99]  Edgar Velázquez-Armendáriz,et al.  Implementing the render cache and the edge-and-point image on graphics hardware , 2006, Graphics Interface.

[100]  Mark Barnes COLLADA , 2006, SIGGRAPH Courses.

[101]  Hans Hagen,et al.  Volume Ray Casting with Peak Finding and Differential Sampling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[102]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[103]  Greg Humphreys,et al.  Chromium: a stream-processing framework for interactive rendering on clusters , 2002, SIGGRAPH.

[104]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[105]  Anders Ynnerman,et al.  Multiresolution Interblock Interpolation in Direct Volume Rendering , 2006, EuroVis.

[106]  Jürgen Döllner,et al.  Real-time Piecewise Perspective Projections , 2009, GRAPP.

[107]  Nils Beck,et al.  DiReC: distributing the render cache to PC-clusters for interactive environments , 2005, VRST '05.

[108]  Alireza Entezari,et al.  A Granular Three Dimensional Multiresolution Transform , 2006, EuroVis.

[109]  Hugues Hoppe,et al.  Terrain Rendering Using GPU-Based Geometry Clipmaps , 2005 .

[110]  David S. Ebert,et al.  VolQD: direct volume rendering of multi-million atom quantum dot simulations , 2005, VIS 05. IEEE Visualization, 2005..

[111]  George Drettakis,et al.  Interactive Rendering using the Render Cache , 1999, Rendering Techniques.

[112]  R. Indebetouw,et al.  The Spitzer/GLIMPSE Surveys: A New View of the Milky Way , 2009 .

[113]  Mary C. Whitton,et al.  An evaluation of navigational ability comparing Redirected Free Exploration with Distractors to Walking-in-Place and joystick locomotio interfaces , 2011, 2011 IEEE Virtual Reality Conference.

[114]  John C. Hart,et al.  The CAVE: audio visual experience automatic virtual environment , 1992, CACM.

[115]  C. H. Byers,et al.  Wall Effects on Flow Past Solid Spheres at Finite Reynolds Number , 1996 .

[116]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[117]  Gerd Bruder,et al.  A taxonomy for deploying redirection techniques in immersive virtual environments , 2012, 2012 IEEE Virtual Reality Workshops (VRW).

[118]  Mary C. Whitton,et al.  Walking > walking-in-place > flying, in virtual environments , 1999, SIGGRAPH.

[119]  Markus Gross,et al.  Real-time Fluid Simulations with Wavelet Turbulence , 2008 .

[120]  Carolina Cruz-Neira,et al.  VR Juggler: a virtual platform for virtual reality application development , 2001, Proceedings IEEE Virtual Reality 2001.

[121]  Mary Czerwinski,et al.  Immersion in desktop virtual reality , 1997, UIST '97.

[122]  Markus Hadwiger,et al.  Fast Third-Order Texture Filtering , 2005 .

[123]  Klaus H. Hinrichs,et al.  Arch-Explore: A natural user interface for immersive architectural walkthroughs , 2009, 2009 IEEE Symposium on 3D User Interfaces.