Comparison of microbial processing of Brachiaria brizantha, a C4 invasive species and a rainforest species in tropical streams of the Atlantic Forest of south-eastern Brazil

The breakdown of allochthonous organic matter is considered to be the main source of energy and nutrients for the majority of first-order streams. Thus, land-use change and riparian vegetation, such as deforestation and conversion of native forest to pasture lands, will lead to unwanted changes of the structure and function of aquatic ecosystems due to the disturbance of organic-matter supply. The C4 grasses, extensively used as forage in tropical regions, are poorly studied as important sources of allochthonous material because they are usually considered as a poor source of nutrients. Because the effects of land-use change on ecosystem functions are not fully known, we aimed to evaluate how such changes in riparian vegetation can affect nutrient cycling by means of measuring the decomposition rate of an abundant native C3 species and an exotic C4 grass species in first-order streams of the Atlantic Forest. Our results showed that C4 detritus decomposed faster than did C3 detritus, despite its lower nutrient concentration. This was likely to be due to the lower lignin concentration of the C4 species than the native C3 species. Lignin also influenced nutrient-loss dynamics of the C3 species, because it can interact with other cellular constituents and prevent the decomposition of most labile compounds. Our results supported the observation that the replacement of riparian vegetation alters breakdown rates and nutrient distributions, which may disrupt aquatic food webs.

[1]  J. Webster,et al.  Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers , 2017, Global change biology.

[2]  Kimberly T. M. Kennedy,et al.  A global meta‐analysis of exotic versus native leaf decay in stream ecosystems , 2017 .

[3]  E. Martí,et al.  Resource subsidies between stream and terrestrial ecosystems under global change , 2016, Global change biology.

[4]  M. Gessner,et al.  Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning , 2016 .

[5]  P. Camargo,et al.  Land use change in the Atlantic Forest affects carbon and nitrogen sources of streams as revealed by the isotopic composition of terrestrial invertebrates , 2015 .

[6]  A. Flecker,et al.  Leaf-litter breakdown in tropical streams: is variability the norm? , 2015, Freshwater Science.

[7]  Frank O. Masese,et al.  Are Large Herbivores Vectors of Terrestrial Subsidies for Riverine Food Webs? , 2015, Ecosystems.

[8]  A. O. Medeiros,et al.  Leaf breakdown in a natural open tropical stream , 2014 .

[9]  Saulo Alberto do Carmo Araújo,et al.  Morfofisiologia e valor nutritivo do capim-braquiária em sistema silvipastoril com diferentes arranjos espaciais , 2014 .

[10]  Igor Polikarpov,et al.  Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production , 2014, Biotechnology for Biofuels.

[11]  R. Reis,et al.  Chemical Composition, in Vitro Digestibility and Gas Production of Brachiaria Managed Under Different Forage Allowances , 2014 .

[12]  M. E. Ferreira,et al.  Pervasive transition of the Brazilian land-use system , 2014 .

[13]  T. Moulton,et al.  Leaf decomposition and ecosystem metabolism as functional indicators of land use impacts on tropical streams , 2014 .

[14]  A. O. Medeiros,et al.  Influence of Leaf Quality in Microbial Decomposition in a Headwater Stream in the Brazilian Cerrado: a 1-Year Study , 2014, Microbial Ecology.

[15]  M. Graça,et al.  The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate , 2013 .

[16]  M. Callisto,et al.  Invertebrate colonisation during leaf processing of native, exotic and artificial detritus in a tropical stream , 2012 .

[17]  G. Berndes,et al.  The revision of the Brazilian Forest Act: increased deforestation or a historic step towards balancing agricultural development and nature conservation? , 2012 .

[18]  K. Treseder,et al.  Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. , 2012, Ecology.

[19]  M. Graça,et al.  Future ecological studies of Brazilian headwater streams under global-changes , 2012 .

[20]  Luiz Antonio Martinelli,et al.  Riparian coverage affects diets of characids in neotropical streams , 2012 .

[21]  K. Treseder,et al.  Litter decay rates are determined by lignin chemistry , 2012, Biogeochemistry.

[22]  M. Gessner,et al.  Litter diversity, fungal decomposers and litter decomposition under simulated stream intermittency , 2011 .

[23]  James T. Anderson,et al.  Litter decomposition in created and reference wetlands in West Virginia, USA , 2011, Wetlands Ecology and Management.

[24]  Lynne Boddy,et al.  Species-specific effects of soil fauna on fungal foraging and decomposition , 2011, Oecologia.

[25]  E. D. Velini,et al.  Efeitos do glyphosate nos teores de lignina, celulose e fibra em Brachiaria decumbens , 2011 .

[26]  F. Riet-Correa,et al.  Intoxicação por Brachiaria spp. em ruminantes no Brasil , 2011 .

[27]  David Dudgeon,et al.  A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. , 2011, Ecology letters.

[28]  Verónica Ferreira,et al.  Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi , 2011 .

[29]  S. Vieira,et al.  Dynamics of Dissolved Forms of Carbon and Inorganic Nitrogen in Small Watersheds of the Coastal Atlantic Forest in Southeast Brazil , 2011 .

[30]  M. Keller,et al.  Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest , 2010 .

[31]  S. Hättenschwiler,et al.  Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest , 2010 .

[32]  Ricardo Andrade Reis,et al.  Composição química, fracionamento de carboidratos e proteínas e digestibilidade in vitro de forrageiras tropicais em diferentes idades de corte , 2010 .

[33]  M. Gessner,et al.  Diversity meets decomposition. , 2010, Trends in ecology & evolution.

[34]  N. Griffiths,et al.  A review of allochthonous organic matter dynamics and metabolism in streams , 2010, Journal of the North American Benthological Society.

[35]  R. Rezende,et al.  Leaf breakdown and invertebrate colonization of Eucalyptus grandis (Myrtaceae) and Hirtella glandulosa (Chrysobalanaceae) in two Neotropical lakes , 2010 .

[36]  A. Okubo,et al.  Effects of grassland species on decomposition of litter and soil microbial communities , 2010, Ecological Research.

[37]  A. J. V. Pires,et al.  Produção e composição químico-bromatológica de duas cultivares de braquiária adubadas com nitrogênio e sua relação com o índice SPAD , 2009 .

[38]  C. Pascoal,et al.  Responses of Aquatic Fungal Communities on Leaf Litter to Temperature‐Change Events , 2009 .

[39]  N. Griffiths,et al.  Rapid decomposition of maize detritus in agricultural headwater streams. , 2009, Ecological applications : a publication of the Ecological Society of America.

[40]  F. Barbosa,et al.  Macroconsumers are more important than specialist macroinvertebrate shredders in leaf processing in urban forest streams of Rio de Janeiro, Brazil , 2009, Hydrobiologia.

[41]  M. Gessner,et al.  Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. , 2009, Ecology.

[42]  R. B. Jackson,et al.  The Global Stoichiometry of Litter Nitrogen Mineralization , 2008, Science.

[43]  M. Zimmer,et al.  Selective consumption and digestion of litter microbes by Porcellio scaber (Isopoda: Oniscidea) , 2008 .

[44]  A. Oliveira,et al.  Relative effect of litter quality, forest type and their interaction on leaf decomposition in south-east Brazilian forests , 2008, Journal of Tropical Ecology.

[45]  M. Palmer,et al.  Herbs and grasses as an allochthonous resource in open‐canopy headwater streams , 2007 .

[46]  A. D. Silva,et al.  Soil loss risk and habitat quality in streams of a meso-scale river basin , 2007 .

[47]  N. Fierer,et al.  Microbial nitrogen limitation increases decomposition. , 2007, Ecology.

[48]  L. U. Hepp,et al.  Chemistry compound dynamic of leaf-litter and fauna associated with breakdown process of arboreous species in a stream from North of Rio Grande do Sul, Brazil , 2007 .

[49]  J. Goma-Tchimbakala Comparison of litter dynamics in three plantations of an indigenous timber-tree species (Terminalia superba) and a natural tropical forest in Mayombe, Congo , 2006 .

[50]  L. Flanagan,et al.  Decomposition, δ13C, and the “lignin paradox” , 2006 .

[51]  R. Garcia,et al.  Consumo, digestibilidade total e desempenho de novilhos Nelore recebendo dietas contendo diferentes proporções de silagens de Brachiaria brizantha cv. Marandu e de sorgo , 2005 .

[52]  J. T. Zervoudakis,et al.  Avaliação qualitativa da pastagem diferida de Brachiaria decumbens Stapf., sob pastejo, no período da seca, por intermédio de três métodos de amostragem , 2005 .

[53]  S. Hättenschwiler,et al.  Soil animals alter plant litter diversity effects on decomposition. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Martins,et al.  Degradabilidade in situ da matéria seca de forrageiras tropicais obtidas em diferentes épocas de corte , 2004 .

[55]  R. Barbehenn,et al.  C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2 , 2004 .

[56]  R. Barbehenn,et al.  Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality , 2004, Oecologia.

[57]  R. P. Lana,et al.  Avaliação de pastagem diferida de Brachiaria decumbens Stapf: 1. Características químico-bromatológicas da forragem durante a seca , 2004 .

[58]  M. Rajashekhar,et al.  Effects of temperature and light on growth and sporulation of aquatic hyphomycetes , 2000, Hydrobiologia.

[59]  S. Bunn,et al.  Can C4 plants contribute to aquatic food webs of subtropical streams , 2003 .

[60]  P. Lavelle,et al.  Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality , 2002, Biology and Fertility of Soils.

[61]  J. Meeuwig,et al.  Freshwater Protected Areas: Strategies for Conservation , 2002, Conservation biology : the journal of the Society for Conservation Biology.

[62]  J. Scheirs,et al.  A TEST OF THE C3-C4 HYPOTHESIS WITH TWO GRASS MINERS , 2001 .

[63]  Schweizer,et al.  Isotopic ((13)C) fractionation during plant residue decomposition and its implications for soil organic matter studies. , 1999, Rapid communications in mass spectrometry : RCM.

[64]  R. Sederoff,et al.  Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants) , 1996, Plant physiology.

[65]  M. Gessner,et al.  Bacteria, fungi and the breakdown of leaf litter in a large river , 1995 .

[66]  P. Bottner,et al.  Litter decomposition, climate and liter quality. , 1995, Trends in ecology & evolution.

[67]  M. Gessner,et al.  IMPORTANCE OF STREAM MICROFUNGI IN CONTROLLING BREAKDOWN RATES OF LEAF LITTER , 1994 .

[68]  P. Boon,et al.  A review of methodology used to measure leaf litter decomposition in lotic environments: Time to turn over an old leaf? , 1991 .

[69]  Robert C. Petersen,et al.  Leaf processing in a woodland stream , 1974 .

[70]  L. Solórzano DETERMINATION OF AMMONIA IN NATURAL WATERS BY THE PHENOLHYPOCHLORITE METHOD 1 1 This research was fully supported by U.S. Atomic Energy Commission Contract No. ATS (11‐1) GEN 10, P.A. 20. , 1969 .

[71]  J. Olson,et al.  Energy Storage and the Balance of Producers and Decomposers in Ecological Systems , 1963 .