Design Ensemble Machine Learning Model for Breast Cancer Diagnosis
暂无分享,去创建一个
Zhenyu Wang | Sung-huai Hsieh | Sheau-Ling Hsieh | Po-Hsun Cheng | Kai-Ping Hsu | Chi-Huang Chen | Feipei Lai | I-Shun Lee | F. Lai | S. Hsieh | K. Hsu | Chi-Huang Chen | P. Cheng | S. Hsieh | Zhenyu Wang | I-Shun Lee | Po-Hsun Cheng
[1] Noel E. Sharkey,et al. Adapting an Ensemble Approach for the Diagnosis of Breast Cancer , 1998 .
[2] Kemal Polat,et al. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis , 2007, Comput. Biol. Medicine.
[3] J. Ross Quinlan,et al. Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..
[4] Chris H. Q. Ding,et al. Minimum redundancy feature selection from microarray gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.
[5] Ferenc Szeifert,et al. Supervised fuzzy clustering for the identification of fuzzy classifiers , 2003, Pattern Recognit. Lett..
[6] Xin Yao,et al. A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.
[7] Yong Xu,et al. Neuro-Fuzzy Ensemble Approach for Microarray Cancer Gene Expression Data Analysis , 2006, 2006 International Symposium on Evolving Fuzzy Systems.
[8] Gonzalo Martínez-Muñoz,et al. Switching class labels to generate classification ensembles , 2005, Pattern Recognit..
[9] Michael I. Jordan,et al. Feature selection for high-dimensional genomic microarray data , 2001, ICML.
[10] Thomas G. Dietterich. What is machine learning? , 2020, Archives of Disease in Childhood.
[11] Thomas G. Dietterich. Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.
[12] Mykola Pechenizkiy,et al. Diversity in search strategies for ensemble feature selection , 2005, Inf. Fusion.