Self-healing polymer-based electrolyte induced by amorphous three-dimensional carbon for high-performance solid-state Li metal batteries

[1]  M. Watanabe,et al.  Carbonaceous-Material-Induced Gelation of Concentrated Electrolyte Solutions for Application in Lithium-Sulfur Battery Cathodes. , 2022, ACS applied materials & interfaces.

[2]  Rong Xu,et al.  An Interdigitated Li‐Solid Polymer Electrolyte Framework for Interfacial Stable All‐Solid‐State Batteries , 2022, Advanced Energy Materials.

[3]  Ruizhi Yang,et al.  Enhanced Electrochemical Proterties and Optimiazed Li + Transmission Pathways of PEO / LLZTO‐Based Composite Electrolytes Modified by Supramolecular Combination , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[4]  Chao Ching Wang,et al.  Improving Li-ion interfacial transport in hybrid solid electrolytes , 2022, Nature Nanotechnology.

[5]  Y. Liu,et al.  A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery , 2022, Energy Storage Materials.

[6]  Weiguo Hu,et al.  Self-Healing Single-Ion-Conductive Artificial Polymeric Solid Electrolyte Interphases for Stable Lithium Metal Anodes , 2021, Nano Energy.

[7]  Seokgyu Ryu,et al.  Interface Modeling via Tailored Energy Band Alignment: Toward Electrochemically Stabilized All‐Solid‐State Li‐Metal Batteries , 2021, Advanced Functional Materials.

[8]  C. Wang,et al.  Composite Polymer Electrolyte with Three-Dimensional Ion Transport Channels Constructed by NaCl Template for Solid-State Lithium Metal Batteries , 2021, Energy Storage Materials.

[9]  Luyi Yang,et al.  PIM‐1 as a Multifunctional Framework to Enable High‐Performance Solid‐State Lithium–Sulfur Batteries , 2021, Advanced Functional Materials.

[10]  Xiaobo Ji,et al.  Carbon Dots Evoked Li Ion Dynamics for Solid State Battery. , 2021, Small.

[11]  W. He,et al.  Space Charge Layer Effect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution , 2021, Transactions of Tianjin University.

[12]  Yu Cao,et al.  Enhanced Electrochemical Performance of Poly(ethylene oxide) Composite Polymer Electrolyte via Incorporating Lithiated Covalent Organic Framework , 2021, Transactions of Tianjin University.

[13]  X. Tao,et al.  Natural Wood Structure Inspires Practical Lithium–Metal Batteries , 2021 .

[14]  Zuqiang Huang,et al.  Synthesis of starch-based super absorbent polymer with high agglomeration and wettability for applying in road dust suppression. , 2021, International journal of biological macromolecules.

[15]  Yiyu Feng,et al.  Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries , 2021 .

[16]  Yun Zheng,et al.  A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. , 2020, Chemical Society reviews.

[17]  F. Mashayek,et al.  Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities , 2020, Advanced Functional Materials.

[18]  Yihui Zou,et al.  Three-Dimensional Porous Alginate Fiber Membrane Reinforced PEO-based Solid Polymer Electrolyte for Safe and High-performance Lithium Ion Batteries. , 2020, ACS applied materials & interfaces.

[19]  S. Adams,et al.  Thermal Conductive 2D Boron Nitride for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries , 2020, Advanced science.

[20]  G. Cui,et al.  Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High‐Rate and High‐Voltage All‐Solid‐State Battery , 2020, Advanced Energy Materials.

[21]  Wei Tang,et al.  Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries , 2020 .

[22]  Zhigang Xue,et al.  Self-Healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-Linked Polymer Matrix for Lithium-Ion Batteries , 2020, Macromolecules.

[23]  Jiayan Luo,et al.  MXene‐Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors , 2020, Advanced Energy Materials.

[24]  Xiaoting Lin,et al.  Self-healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries , 2019, Energy Storage Materials.

[25]  G. Cui,et al.  Intermolecular Chemistry in Solid Polymer Electrolytes for High‐Energy‐Density Lithium Batteries , 2019, Advanced materials.

[26]  D. Brandell,et al.  Initial Steps in PEO Decomposition on a Li Metal Electrode , 2019, The Journal of Physical Chemistry C.

[27]  Shaoyun Guo,et al.  Graphene and graphene derivatives toughening polymers: Toward high toughness and strength , 2019, Chemical Engineering Journal.

[28]  P. Bruce,et al.  Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells , 2019, Nature Materials.

[29]  P. Kohl,et al.  A Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries. , 2019, ACS applied materials & interfaces.

[30]  Xin Guo,et al.  Three-dimensional Garnet Framework Reinforced Solid Composite Electrolytes with High Lithium-Ion Conductivity and Excellent Stability. , 2019, ACS applied materials & interfaces.

[31]  Aijun Li,et al.  Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte , 2019, Nano Energy.

[32]  Jonas Mindemark,et al.  Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations , 2019, Journal of Materials Chemistry A.

[33]  Haihui Wang,et al.  Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework , 2019, Energy & Environmental Science.

[34]  Yutao Li,et al.  Double‐Layer Polymer Electrolyte for High‐Voltage All‐Solid‐State Rechargeable Batteries , 2018, Advanced materials.

[35]  David G. Mackanic,et al.  Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries , 2018, Materials Today Nano.

[36]  M. Barsoum,et al.  2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries , 2018, Nanoscale advances.

[37]  Xian‐Xiang Zeng,et al.  Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries , 2018, Electrochemical Energy Reviews.

[38]  X. Tao,et al.  Mg2B2O5 Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. , 2018, Nano letters.

[39]  Jiahua Zhu,et al.  A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites , 2018, Advanced Composites and Hybrid Materials.

[40]  B. Trzebicka,et al.  Synergy in hybrid polymer/nanocarbon composites. A review , 2015 .

[41]  J. Zhong,et al.  Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide , 2014 .

[42]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[43]  Lina Ye,et al.  Effect of PEO on the network structure of PVA hydrogels prepared by freezing/thawing method , 2013 .

[44]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[45]  Biqiong Chen,et al.  Reinforcement and interphase of polymer/graphene oxide nanocomposites , 2012 .

[46]  Mohammed H Al-Saleh,et al.  Review of the mechanical properties of carbon nanofiber/polymer composites , 2011 .

[47]  S. Licoccia,et al.  Metallic-lithium, LiFePO4-based polymer battery using PEO—ZrO2 nanocomposite polymer electrolyte , 2004 .

[48]  Weijuan Ye,et al.  Enhanced Ionic Conductivity in Poly(ethylene oxide)/Layered Double Hydroxide Nanocomposite Electrolytes , 2003 .

[49]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[50]  Robertson Mechanical properties and coordinations of amorphous carbons. , 1992, Physical review letters.