All-in-one energy harvesting and storage devices

Currently, integration of energy harvesting and storage devices is considered to be one of the most important energy-related technologies due to the possibility of replacing batteries or at least extending the lifetime of a battery. This review aims to describe current progress in the various types of energy harvesters, hybrid energy harvesters, including multi-type energy harvesters with coupling of multiple energy sources, and hybridization of energy harvesters and energy storage devices for self-powered electronics. We summarize research on recent energy harvesters based on the piezoelectric, triboelectric, pyroelectric, thermoelectric, and photovoltaic effects. We also cover hybrid cell technologies to simultaneously generate electricity using multiple types of environmental energy, such as mechanical, thermal, and solar energy. Energy harvesters based on the coupling of multiple energy sources exhibit enhancement of power generation performance with synergetic effects. Finally, integration of energy harvesters and energy storage devices is introduced. In particular, self-charging power cells provide an innovative approach to the direct conversion of mechanical energy into electrochemical energy to decrease energy conversion loss.

[1]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[2]  I. Aksay,et al.  Graphene materials and their use in dye-sensitized solar cells. , 2014, Chemical reviews.

[3]  Hyeoungwoo Kim,et al.  Consideration of Impedance Matching Techniques for Efficient Piezoelectric Energy Harvesting , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  Zhong Lin Wang,et al.  Interface-Free Area-Scalable Self-Powered Electroluminescent System Driven by Triboelectric Generator , 2015, Scientific Reports.

[5]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[6]  Xinyu Xue,et al.  CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery , 2013 .

[7]  K. Ariga,et al.  Mesoporous architectures with highly crystallized frameworks , 2014 .

[8]  H J Goldsmid,et al.  The performance of bismuth telluride thermojunctions , 1958 .

[9]  M. Kanatzidis,et al.  Valence-band structure of highly efficient p -type thermoelectric PbTe-PbS alloys , 2013 .

[10]  Chenguo Hu,et al.  Harvesting heat energy from hot/cold water with a pyroelectric generator , 2014 .

[11]  Xiaodan Hong,et al.  Recent advancements in perovskite solar cells: flexibility, stability and large scale , 2016 .

[12]  Zhong Lin Wang,et al.  A self-powered electrochromic device driven by a nanogenerator , 2012 .

[13]  Tao Chen,et al.  Thermoelectric Bi2Te3-improved charge collection for high-performance dye-sensitized solar cells , 2012 .

[14]  Fuzhi Huang,et al.  A Bi-layer TiO2 photoanode for highly durable, flexible dye-sensitized solar cells , 2015 .

[15]  Jin Woong Kim,et al.  Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments , 2015 .

[16]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[17]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[18]  Jihui Yang,et al.  Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering , 2004 .

[19]  Heath Hofmann,et al.  Damping as a result of piezoelectric energy harvesting , 2004 .

[20]  S. Dou,et al.  Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances , 2014 .

[21]  Huisheng Peng,et al.  Wearable solar cells by stacking textile electrodes. , 2014, Angewandte Chemie.

[22]  Long Lin,et al.  Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system , 2014 .

[23]  S. Dou,et al.  Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells , 2015 .

[24]  Katsuhiko Ariga,et al.  Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks. , 2014, Chemistry.

[25]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[26]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[27]  Y. Liu,et al.  Study on hole-transport-material-free planar TiO2/CH3NH3PbI3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell , 2015 .

[28]  Yanhong Luo,et al.  Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum , 2010 .

[29]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[30]  Zhong Lin Wang,et al.  BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. , 2012, The journal of physical chemistry letters.

[31]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[32]  Ju-Hyuck Lee,et al.  Micropatterned P(VDF‐TrFE) Film‐Based Piezoelectric Nanogenerators for Highly Sensitive Self‐Powered Pressure Sensors , 2015 .

[33]  E. A. Eliseev,et al.  Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting , 2010 .

[34]  Yannan Xie,et al.  Self-powered thin-film motion vector sensor , 2015, Nature Communications.

[35]  Dukhyun Choi,et al.  p-Type polymer-hybridized high-performance piezoelectric nanogenerators. , 2012, Nano letters.

[36]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[37]  Chen Xu,et al.  Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. , 2009, Journal of the American Chemical Society.

[38]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[39]  Chuntae Kim,et al.  Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars , 2015 .

[40]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[41]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply , 2002 .

[42]  Aylin Yener,et al.  Optimum Transmission Policies for Battery Limited Energy Harvesting Nodes , 2010, IEEE Transactions on Wireless Communications.

[43]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[44]  Xinyu Xue,et al.  Flexible Self‐Charging Power Cell for One‐Step Energy Conversion and Storage , 2014 .

[45]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[46]  Zhong Lin Wang,et al.  Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors , 2012, Nanotechnology.

[47]  Tae Yun Kim,et al.  Thermally Induced Strain‐Coupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators , 2015 .

[48]  K. Ariga From Nanotechnology to Nanoarchitectonics , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[49]  Yusuke Yamauchi,et al.  Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. , 2015, ACS nano.

[50]  Guang Zhu,et al.  Flexible high-output nanogenerator based on lateral ZnO nanowire array. , 2010, Nano letters.

[51]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[52]  Jae-Young Choi,et al.  Control of naturally coupled piezoelectric and photovoltaic properties for multi-type energy scavengers , 2011 .

[53]  Jung-Hyun Kim,et al.  Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems , 2014, Nano Research.

[54]  Masakazu Aono,et al.  Nanoarchitectonics: a new materials horizon for nanotechnology , 2015 .

[55]  Manoj Kumar Gupta,et al.  Unidirectional High‐Power Generation via Stress‐Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator , 2014 .

[56]  Long Lin,et al.  Motion charged battery as sustainable flexible-power-unit. , 2013, ACS nano.

[57]  Sung Yun Chung,et al.  All‐Solution‐Processed Flexible Thin Film Piezoelectric Nanogenerator , 2012, Advanced materials.

[58]  C. Rao,et al.  Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1−xZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures , 2013 .

[59]  G. Cao,et al.  A Self‐Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium‐Ion Battery for Wearable Electronics , 2015, Advanced materials.

[60]  Erick O. Torres,et al.  Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[61]  Zhong Lin Wang,et al.  Piezoelectric nanogenerator using p-type ZnO nanowire arrays. , 2009, Nano letters.

[62]  Li Zheng,et al.  Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy , 2014 .

[63]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[64]  Ju-Hyuck Lee,et al.  High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator , 2015 .

[65]  Michael C. McAlpine,et al.  Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. , 2013, Nano letters.

[66]  Xin Cai,et al.  Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage , 2012, Advanced materials.

[67]  D. Inman,et al.  Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thin-film batteries , 2011 .

[68]  Eunkyoung Kim,et al.  Highly Efficient, Iodine‐Free Dye‐Sensitized Solar Cells with Solid‐State Synthesis of Conducting Polymers , 2011, Advanced materials.

[69]  Seung Hwan Ko,et al.  A Hyper‐Stretchable Elastic‐Composite Energy Harvester , 2015, Advanced materials.

[70]  M. Dresselhaus,et al.  Modeling study of thermoelectric SiGe nanocomposites , 2009 .

[71]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[72]  Jongbeom Na,et al.  Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure. , 2015, ACS nano.

[73]  Byung Jin Cho,et al.  Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator , 2014 .

[74]  Zhong-Lin Wang,et al.  Alternating the Output of a CdS Nanowire Nanogenerator by a White‐Light‐Stimulated Optoelectronic Effect , 2008 .

[75]  Zhong Lin Wang,et al.  Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. , 2011, ACS nano.

[76]  Minbaek Lee,et al.  Nanowire-quantum dot hybridized cell for harvesting sound and solar energies , 2010 .

[77]  Wenzhong Shen,et al.  High‐Efficiency Nanostructured Silicon Solar Cells on a Large Scale Realized Through the Suppression of Recombination Channels , 2015, Advanced materials.

[78]  Tae Yun Kim,et al.  Nanopatterned textile-based wearable triboelectric nanogenerator. , 2015, ACS nano.

[79]  Kyungsuk Yum,et al.  Voltage generation from individual BaTiO(3) nanowires under periodic tensile mechanical load. , 2007, Nano letters.

[80]  Ching-Ping Wong,et al.  A hybrid energy cell for self-powered water splitting† , 2013 .

[81]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[82]  Guillermo C Bazan,et al.  Bulk heterojunction solar cells: morphology and performance relationships. , 2014, Chemical reviews.

[83]  Jung-Yong Lee,et al.  Wearable textile battery rechargeable by solar energy. , 2013, Nano letters.

[84]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[85]  C. Falconi,et al.  Self-powered transparent flexible graphene microheaters , 2015 .

[86]  Eunkyoung Kim,et al.  TiO2 nanoparticulate-wire hybrids for highly efficient solid-state dye-sensitized solar cells using SSP-PEDOTs , 2014 .

[87]  Chang Bao Han,et al.  Triboelectric Nanogenerators as a Self-Powered 3D Acceleration Sensor. , 2015, ACS applied materials & interfaces.

[88]  Aldo Di Carlo,et al.  Piezoelectric potential in vertically aligned nanowires for high output nanogenerators , 2011, Nanotechnology.

[89]  Zhong Lin Wang,et al.  Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. , 2013, ACS nano.

[90]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[91]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[92]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[93]  Weishu Liu,et al.  Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb , 2008 .

[94]  Yan Zhang,et al.  Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. , 2012, Nano letters.

[95]  Fengru Fan,et al.  Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy , 2014, Advanced materials.

[96]  S. Dou,et al.  Highly connected hierarchical textured TiO2 spheres as photoanodes for dye-sensitized solar cells , 2014 .

[97]  Lukas Schmidt-Mende,et al.  Nanostructured Organic and Hybrid Solar Cells , 2011, Advanced materials.

[98]  Bing Sun,et al.  Thermoelectric transport properties and crystal growth of BiSbTe3 bulk materials produced by a unique high-pressure synthesis , 2013 .

[99]  Yongan Huang,et al.  Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. , 2014, Nanoscale.

[100]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[101]  Zhong Lin Wang,et al.  Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. , 2012, ACS nano.

[102]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[103]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[104]  Nae-Eung Lee,et al.  Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. , 2015, ACS nano.

[105]  Hongzheng Chen,et al.  A solution-processable bipolar diketopyrrolopyrrole molecule used as both electron donor and acceptor for efficient organic solar cells , 2015 .

[106]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[107]  Zhong Lin Wang,et al.  Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments. , 2015, ACS nano.

[108]  G. J. Snyder,et al.  Nanostructuring of thermoelectric Mg(2) Si via a nonequilibrium intermediate state. , 2012, Small.

[109]  Ya Yang,et al.  Flexible Pyroelectric Nanogenerators using a Composite Structure of Lead‐Free KNbO3 Nanowires , 2012, Advanced materials.

[110]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[111]  T. Saga Advances in crystalline silicon solar cell technology for industrial mass production , 2010 .

[112]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[113]  Zhong Lin Wang,et al.  Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. , 2015, ACS nano.

[114]  Katsuhiko Ariga,et al.  Templated Synthesis for Nanoarchitectured Porous Materials , 2015 .

[115]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[116]  Yan Zhang,et al.  PVDF–PZT nanocomposite film based self-charging power cell , 2014, Nanotechnology.

[117]  Caofeng Pan,et al.  Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing , 2015, Nature Communications.

[118]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[119]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[120]  Zhong Lin Wang,et al.  Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. , 2013, ACS nano.

[121]  Zafar Hussain Ibupoto,et al.  Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric , 2012 .

[122]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[123]  Christopher R. Bowen,et al.  Micropatterning of Flexible and Free Standing Polyvinylidene Difluoride (PVDF) Films for Enhanced Pyroelectric Energy Transformation , 2015 .

[124]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[125]  S. Matyjasik,et al.  Pyroelectric properties of the wide-gap semiconductor CdS in the low-temperature region , 2014 .

[126]  N. S. Sariciftci,et al.  A self-rechargeable and flexible polymer solar battery , 2007 .

[127]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[128]  Soo Min Hwang,et al.  Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. , 2014, ACS nano.

[129]  Zhong Lin Wang,et al.  Radial-arrayed rotary electrification for high performance triboelectric generator , 2014, Nature Communications.

[130]  Hyunjin Kim,et al.  Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator , 2013, Nanotechnology.

[131]  Rajeev J. Ram,et al.  Solar Thermoelectric Generator for Micropower Applications , 2009, Journal of Electronic Materials.

[132]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[133]  Illan J. Kramer,et al.  The architecture of colloidal quantum dot solar cells: materials to devices. , 2014, Chemical reviews.

[134]  Licheng Sun,et al.  Molecular engineering of small molecules donor materials based on phenoxazine core unit for solution-processed organic solar cells , 2014 .

[135]  Fang Wang,et al.  Pyroelectric properties of Mn-doped 94.6Na0.5Bi0.5TiO3-5.4BaTiO3 lead-free single crystals , 2014 .

[136]  W. Tiller,et al.  Effect of Freezing Conditions on the Thermoelectric Properties of BiSbTe3 Crystals , 1961 .

[137]  Xiaoqing Zhang,et al.  Low‐Cost, Large‐Area, Stretchable Piezoelectric Films Based on Irradiation‐Crosslinked Poly(propylene) , 2014 .

[138]  Byeonggwan Kim,et al.  Nanopatterning of mesoporous inorganic oxide films for efficient light harvesting of dye-sensitized solar cells. , 2012, Angewandte Chemie.

[139]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[140]  Jeong Min Baik,et al.  Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles , 2015 .

[141]  N. Lee,et al.  Highly sensitive stretchable transparent piezoelectric nanogenerators , 2013 .

[142]  Y. Yamauchi,et al.  Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. , 2015, Physical chemistry chemical physics : PCCP.

[143]  Li Han,et al.  A novel high-performance photovoltaic–thermoelectric hybrid device , 2011 .

[144]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[145]  E. A. Chávez-Urbiola,et al.  Solar hybrid systems with thermoelectric generators , 2012 .

[146]  E. Sargent,et al.  Colloidal quantum dot solar cells , 2012, Nature Photonics.

[147]  J. Rhee,et al.  Piezo and photoelectric coupled nanogenerator using CdSe quantum dots incorporated ZnO nanowires in ITO/ZnO NW/Si structure , 2013 .

[148]  Hyuk-Sang Kwon,et al.  Self-powered deep brain stimulation via a flexible PIMNT energy harvester , 2015 .

[149]  Luca Benini,et al.  Modeling and Optimization of a Solar Energy Harvester System for Self-Powered Wireless Sensor Networks , 2008, IEEE Transactions on Industrial Electronics.

[150]  Chang Kyu Jeong,et al.  Flexible and Large‐Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes , 2013 .

[151]  Chen Xu,et al.  Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy , 2011, Advanced materials.

[152]  Zhong Lin Wang,et al.  Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. , 2013, ACS nano.

[153]  Choongho Yu,et al.  Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. , 2012, Nano letters.

[154]  Jihuai Wu,et al.  Electrolytes in dye-sensitized solar cells. , 2015, Chemical reviews.

[155]  Balasubramaniam Saravanakumar,et al.  Piezoelectric-driven self-charging supercapacitor power cell. , 2015, ACS nano.

[156]  Tae Yun Kim,et al.  Transparent Flexible Graphene Triboelectric Nanogenerators , 2014, Advanced materials.

[157]  H J Goldsmid,et al.  The use of semiconductors in thermoelectric refrigeration , 1954 .

[158]  Seung M. Oh,et al.  Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays , 2015, Scientific Reports.

[159]  Eunkyoung Kim,et al.  Enhanced Performance of I2‐Free Solid‐State Dye‐Sensitized Solar Cells with Conductive Polymer up to 6.8% , 2011 .

[160]  Dingcai Wu,et al.  Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage , 2015, Nature Communications.

[161]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[162]  Yusheng Zhou,et al.  Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors. , 2012, ACS nano.

[163]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[164]  C. Satterthwaite,et al.  Electrical and Thermal Properties of Bi 2 Te 3 , 1957 .

[165]  Deniz Gündüz,et al.  A general framework for the optimization of energy harvesting communication systems with battery imperfections , 2011, Journal of Communications and Networks.

[166]  Paul M. Weaver,et al.  Measurement techniques for piezoelectric nanogenerators , 2013 .

[167]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[168]  Masakazu Aono,et al.  The Way to Nanoarchitectonics and the Way of Nanoarchitectonics , 2016, Advanced materials.

[169]  Yong Ding,et al.  Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. , 2011, Nano letters.

[170]  Long Lin,et al.  A Hybridized Power Panel to Simultaneously Generate Electricity from Sunlight, Raindrops, and Wind around the Clock , 2015 .

[171]  R. Vullers,et al.  Wearable Thermoelectric Generators for Body-Powered Devices , 2009 .

[172]  Heath Hofmann,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2003 .

[173]  Sossina M. Haile,et al.  Self-Assembled Nanometer Lamellae of Thermoelectric PbTe and Sb2Te3 with Epitaxy-like Interfaces , 2007 .

[174]  Jia-Min Shieh,et al.  Flexible high performance hybrid AZO/Ag-nanowire/AZO sandwich structured transparent conductors for flexible Cu(In,Ga)Se2 solar cell applications , 2016 .

[175]  H. Yamazaki,et al.  Pyroelectric properties of polymer-ferroelectric composites , 1981 .

[176]  A. Centeno,et al.  Photoexcitation cascade and multiple hot-carrier generation in graphene , 2012, Nature Physics.

[177]  D. Ginley,et al.  Low-cost inorganic solar cells: from ink to printed device. , 2010, Chemical reviews.

[178]  Jie Chen,et al.  A nanogenerator for harvesting airflow energy and light energy , 2014 .

[179]  S. Sinogeikin,et al.  High pressure transport characteristics of Bi2Te3, Sb2Te3, and BiSbTe3 , 2012 .

[180]  Shaoqin Gong,et al.  Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development , 2015, Advanced materials.

[181]  Jong-Hyun Ahn,et al.  A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes , 2012 .

[182]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[183]  Jun Chen,et al.  Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High‐Efficiency Energy‐Harvesting and Self‐Powered Sensing , 2015, Advanced materials.

[184]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[185]  Caofeng Pan,et al.  Optical Fiber‐Based Core–Shell Coaxially Structured Hybrid Cells for Self‐Powered Nanosystems , 2012, Advanced materials.

[186]  A. Heeger,et al.  Single‐Junction Organic Solar Cells Based on a Novel Wide‐Bandgap Polymer with Efficiency of 9.7% , 2015, Advanced materials.

[187]  Long Lin,et al.  Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies , 2013 .

[188]  Y. Bando,et al.  Cable‐Type Supercapacitors of Three‐Dimensional Cotton Thread Based Multi‐Grade Nanostructures for Wearable Energy Storage , 2013, Advanced materials.

[189]  C. Van Hoof,et al.  Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes , 2007, IEEE Sensors Journal.

[190]  Huisheng Peng,et al.  A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. , 2015, Small.

[191]  David J. Singh,et al.  Doping and temperature dependence of thermoelectric properties in Mg2(Si,Sn) , 2012 .

[192]  Jung Ho Kim,et al.  Hydrogen silsequioxane-derived Si/SiO(x) nanospheres for high-capacity lithium storage materials. , 2014, ACS applied materials & interfaces.

[193]  Yanhong Luo,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)‐Modified P3HT Hole‐Transporting Material , 2015 .

[194]  Sung Kyun Kim,et al.  Shape memory polymer-based self-healing triboelectric nanogenerator , 2015 .

[195]  Zhong Lin Wang,et al.  Woven structured triboelectric nanogenerator for wearable devices. , 2014, ACS applied materials & interfaces.

[196]  Erjun Liang,et al.  Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires , 2015 .

[197]  Jean-Marie Dilhac,et al.  Multisource and Battery-Free Energy Harvesting Architecture for Aeronautics Applications , 2015, IEEE Transactions on Power Electronics.

[198]  Zhong Lin Wang,et al.  Enhanced Cu₂S/CdS coaxial nanowire solar cells by piezo-phototronic effect. , 2012, Nano letters.

[199]  J. Heo,et al.  CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage , 2016, Advanced materials.

[200]  Yannan Xie,et al.  Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell , 2015 .

[201]  N. D. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[202]  Haitao Huang,et al.  A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes , 2015 .

[203]  Jun Chen,et al.  A self-powered triboelectric nanosensor for mercury ion detection. , 2013, Angewandte Chemie.

[204]  Wei Wang,et al.  Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. , 2013, Nano letters.

[205]  N719- and D149-sensitized 3D hierarchical rutile TiO2 solar cells--a comparative study. , 2015, Physical chemistry chemical physics : PCCP.

[206]  Junjie Bai,et al.  A Self‐Powered Angle Measurement Sensor Based on Triboelectric Nanogenerator , 2015 .

[207]  B. Cho,et al.  A wearable thermoelectric generator fabricated on a glass fabric , 2014 .

[208]  Simiao Niu,et al.  Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. , 2014, Nano letters.

[209]  Yong Ding,et al.  Piezoelectric nanogenerator using CdS nanowires , 2008 .

[210]  S. Dou,et al.  Mesoporous Iron Phosphonate Electrodes with Crystalline Frameworks for Lithium-Ion Batteries , 2015 .

[211]  Peng Cheng Zhai,et al.  Recent Development in Nano and Graded Thermoelectric Materials , 2005 .

[212]  Qize Zhong,et al.  Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies , 2015 .

[213]  Yan Zhang,et al.  Pyroelectric nanogenerators for driving wireless sensors. , 2012, Nano letters.

[214]  Yihe Zhang,et al.  An All‐Solid‐State Flexible Piezoelectric High‐k Film Functioning as Both a Generator and In Situ Storage Unit , 2015 .

[215]  Yaoguang Rong,et al.  Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells , 2015 .

[216]  Katsuhiko Ariga,et al.  A Single-Step Synthesis of Electroactive Mesoporous ProDOT-Silica Structures. , 2015, Angewandte Chemie.

[217]  B. Logan,et al.  A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power , 2015 .

[218]  Peter Lund,et al.  Device Physics of Dye Solar Cells , 2010, Advanced materials.

[219]  Y. Hao,et al.  Single‐InN‐Nanowire Nanogenerator with Upto 1 V Output Voltage , 2010, Advanced materials.

[220]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[221]  J. M. Baik,et al.  Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power. , 2015, Nanoscale.

[222]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[223]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[224]  K. Lee,et al.  Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators , 2014 .

[225]  C. E. Kinsella,et al.  Battery Charging Considerations in Small Scale Electricity Generation from a Thermoelectric Module , 2014 .

[226]  Vladimir Leonov,et al.  Wearable electronics self-powered by using human body heat: The state of the art and the perspective , 2009 .