QuAVF: Quality-aware Audio-Visual Fusion for Ego4D Talking to Me Challenge

This technical report describes our QuAVF@NTU-NVIDIA submission to the Ego4D Talking to Me (TTM) Challenge 2023. Based on the observation from the TTM task and the provided dataset, we propose to use two separate models to process the input videos and audio. By doing so, we can utilize all the labeled training data, including those without bounding box labels. Furthermore, we leverage the face quality score from a facial landmark prediction model for filtering noisy face input data. The face quality score is also employed in our proposed quality-aware fusion for integrating the results from two branches. With the simple architecture design, our model achieves 67.4% mean average precision (mAP) on the test set, which ranks first on the leaderboard and outperforms the baseline method by a large margin. Code is available at: https://github.com/hsi-che-lin/Ego4D-QuAVF-TTM-CVPR23

[1]  K. Grauman,et al.  Egocentric Video Task Translation @ Ego4D Challenge 2022 , 2023, ArXiv.

[2]  Jong Wook Kim,et al.  Robust Speech Recognition via Large-Scale Weak Supervision , 2022, ICML.

[3]  Abdel-rahman Mohamed,et al.  Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction , 2022, ICLR.

[4]  James M. Rehg,et al.  Ego4D: Around the World in 3,000 Hours of Egocentric Video , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Georgios Tzimiropoulos,et al.  How Far are We from Solving the 2D & 3D Face Alignment Problem? (and a Dataset of 230,000 3D Facial Landmarks) , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[6]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).