Neocortical neurogenesis: morphogenetic gradients and beyond

[1]  C. Englund,et al.  Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. , 2009, Cerebral cortex.

[2]  Y. Gotoh,et al.  Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon , 2008, Development.

[3]  S. Pääbo,et al.  Insulinoma-Associated 1 Has a Panneurogenic Role and Promotes the Generation and Expansion of Basal Progenitors in the Developing Mouse Neocortex , 2008, Neuron.

[4]  H. Ueda,et al.  Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis , 2008, Development.

[5]  S. Juliano,et al.  Regulation of neural progenitor cell development in the nervous system , 2008, Journal of neurochemistry.

[6]  B. Cubelos,et al.  Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. , 2008, Cerebral cortex.

[7]  J. Rubenstein,et al.  Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2 , 2008, The Journal of comparative neurology.

[8]  Federico Calegari,et al.  Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny , 2008, PloS one.

[9]  Y. Kong,et al.  Mind Bomb 1-Expressing Intermediate Progenitors Generate Notch Signaling to Maintain Radial Glial Cells , 2008, Neuron.

[10]  Ryoichiro Kageyama,et al.  Oscillations in Notch Signaling Regulate Maintenance of Neural Progenitors , 2008, Neuron.

[11]  D. Scadden,et al.  Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation , 2008, Nature Reviews Genetics.

[12]  Robert F. Hevner,et al.  Role of Intermediate Progenitor Cells in Cerebral Cortex Development , 2007, Developmental Neuroscience.

[13]  S. Krauss,et al.  A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. , 2007, Developmental biology.

[14]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[15]  V. Caviness,et al.  Navigating Neocortical Neurogenesis and Neuronal Specification: A Positional Information System Encoded by Neurogenetic Gradients , 2007, The Journal of Neuroscience.

[16]  N. Gaiano,et al.  Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. , 2007, Nature.

[17]  F. Guillemot Cell fate specification in the mammalian telencephalon , 2007, Progress in Neurobiology.

[18]  Julian Lewis,et al.  Deciphering the somite segmentation clock: Beyond mutants and morphants , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[19]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[20]  Julian Lewis,et al.  Setting the Tempo in Development: An Investigation of the Zebrafish Somite Clock Mechanism , 2007, PLoS biology.

[21]  James M. Roberts,et al.  [p27Kip1 independently promotes neuronal differentiation and migration in the cerebral cortex]. , 2006, Bulletin et memoires de l'Academie royale de medecine de Belgique.

[22]  Salvador Martinez,et al.  Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers , 2006, Development.

[23]  A. Iolascon,et al.  Retinoic acid induces p27Kip1 nuclear accumulation by modulating its phosphorylation. , 2006, Cancer research.

[24]  Angeliki Louvi,et al.  Notch signalling in vertebrate neural development , 2006, Nature Reviews Neuroscience.

[25]  P. Rakic,et al.  Molecular and Morphological Heterogeneity of Neural Precursors in the Mouse Neocortical Proliferative Zones , 2006, The Journal of Neuroscience.

[26]  M. Götz,et al.  Developmental cell biology: The cell biology of neurogenesis , 2005, Nature Reviews Molecular Cell Biology.

[27]  W. Huttner,et al.  Selective Lengthening of the Cell Cycle in the Neurogenic Subpopulation of Neural Progenitor Cells during Mouse Brain Development , 2005, The Journal of Neuroscience.

[28]  W. Gordon,et al.  Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27Kip1 degradation , 2005, The Journal of experimental medicine.

[29]  N. Gaiano,et al.  Notch signaling in the mammalian central nervous system: insights from mouse mutants , 2005, Nature Neuroscience.

[30]  H. Hirata,et al.  Hes1 Directly Controls Cell Proliferation through the Transcriptional Repression of p27Kip1 , 2005, Molecular and Cellular Biology.

[31]  G. Stein,et al.  Cell cycle and growth control : biomolecular regulation and cancer , 2005 .

[32]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[33]  C. Englund,et al.  Pax6, Tbr2, and Tbr1 Are Expressed Sequentially by Radial Glia, Intermediate Progenitor Cells, and Postmitotic Neurons in Developing Neocortex , 2005, The Journal of Neuroscience.

[34]  James M. Roberts,et al.  Living with or without cyclins and cyclin-dependent kinases. , 2004, Genes & development.

[35]  Arnold R. Kriegstein,et al.  Calcium Waves Propagate through Radial Glial Cells and Modulate Proliferation in the Developing Neocortex , 2004, Neuron.

[36]  Julian Lewis,et al.  The vertebrate segmentation clock. , 2004, Current opinion in genetics & development.

[37]  C. Walsh,et al.  Sequential phases of cortical specification involve Neurogenin‐dependent and ‐independent pathways , 2004, The EMBO journal.

[38]  H. Okano,et al.  Mapping spatio‐temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain , 2004, Journal of neurochemistry.

[39]  Winfried Denk,et al.  Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Kriegstein,et al.  Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases , 2004, Nature Neuroscience.

[41]  Ani V Das,et al.  Neural stem cells in the mammalian eye: types and regulation. , 2004, Seminars in cell & developmental biology.

[42]  R. R. Sturrock,et al.  The Human Nervous System , 2004 .

[43]  W. Huttner,et al.  An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis , 2003, Journal of Cell Science.

[44]  E. Grove,et al.  Generating the cerebral cortical area map. , 2003, Annual review of neuroscience.

[45]  S. Martinez,et al.  Neuroepithelial secondary organizers and cell fate specification in the developing brain , 2003, Brain Research Reviews.

[46]  Luis Puelles,et al.  Forebrain gene expression domains and the evolving prosomeric model , 2003, Trends in Neurosciences.

[47]  Julian Lewis Autoinhibition with Transcriptional Delay A Simple Mechanism for the Zebrafish Somitogenesis Oscillator , 2003, Current Biology.

[48]  M. Greenberg,et al.  Basic Helix-Loop-Helix Factors in Cortical Development , 2003, Neuron.

[49]  A. Kriegstein,et al.  Radial glia diversity: A matter of cell fate , 2003, Glia.

[50]  J. Olavarria,et al.  Beyond Laminar Fate: Toward a Molecular Classification of Cortical Projection/Pyramidal Neurons , 2003, Developmental Neuroscience.

[51]  V. Caviness,et al.  Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior , 2002, Journal of neuroscience research.

[52]  P. Bhide,et al.  Developmental regulation of the effects of fibroblast growth factor‐2 and 1‐octanol on neuronogenesis: Implications for a hypothesis relating to mitogen–antimitogen opposition , 2002, Journal of neuroscience research.

[53]  M. Götz,et al.  Glial cells generate neurons: the role of the transcription factor Pax6 , 2002, Nature Neuroscience.

[54]  C. Schuurmans,et al.  Molecular mechanisms underlying cell fate specification in the developing telencephalon , 2002, Current Opinion in Neurobiology.

[55]  D. O'Leary,et al.  Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex , 2002, Current Opinion in Neurobiology.

[56]  C. Walsh,et al.  Patterning of the Dorsal Telencephalon and Cerebral Cortex by a Roof Plate-Lhx2 Pathway , 2001, Neuron.

[57]  M. Götz,et al.  Emx2 Promotes Symmetric Cell Divisions and a Multipotential Fate in Precursors from the Cerebral Cortex , 2001, Molecular and Cellular Neuroscience.

[58]  François Guillemot,et al.  Crossregulation between Neurogenin2 and Pathways Specifying Neuronal Identity in the Spinal Cord , 2001, Neuron.

[59]  V. Tarabykin,et al.  Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. , 2001, Development.

[60]  C. Cepko,et al.  Misexpression of basic helix-loop-helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. , 2000, Development.

[61]  G. Tonini,et al.  p27Kip1 accumulation is associated with retinoic-induced neuroblastoma differentiation: evidence of a decreased proteasome-dependent degradation , 2000, Oncogene.

[62]  V. Caviness,et al.  Sequence of Neuron Origin and Neocortical Laminar Fate: Relation to Cell Cycle of Origin in the Developing Murine Cerebral Wall , 1999, The Journal of Neuroscience.

[63]  James M. Roberts,et al.  CDK inhibitors: positive and negative regulators of G1-phase progression. , 1999, Genes & development.

[64]  W. Huttner,et al.  Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  James M. Roberts,et al.  The p21Cip1 and p27Kip1 CDK ‘inhibitors’ are essential activators of cyclin D‐dependent kinases in murine fibroblasts , 1999, The EMBO journal.

[66]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[67]  J. Rubenstein,et al.  Patterning of the embryonic forebrain , 1998, Current Opinion in Neurobiology.

[68]  V. Caviness,et al.  A gradient in the duration of the G1 phase in the murine neocortical proliferative epithelium. , 1997, Cerebral cortex.

[69]  A. Kriegstein,et al.  Cell Coupling and Uncoupling in the Ventricular Zone of Developing Neocortex , 1997, The Journal of Neuroscience.

[70]  T Takahashi,et al.  The Leaving or Q Fraction of the Murine Cerebral Proliferative Epithelium: A General Model of Neocortical Neuronogenesis , 1996, The Journal of Neuroscience.

[71]  V. Caviness,et al.  The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  H. Kennedy,et al.  Modulation of the cell cycle contributes to the parcellation of the primate visual cortex , 1993, Nature.

[73]  V. Caviness,et al.  Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  S. Mcconnell,et al.  Cell cycle dependence of laminar determination in developing neocortex. , 1992, Science.

[75]  S. Mcconnell,et al.  Cell cycle dependence of laminar determination in developing neocortex , 1991 .

[76]  C. Cepko,et al.  Cell lineage and cell migration in the developing cerebral cortex , 1990, Experientia.

[77]  A. Pardee G1 events and regulation of cell proliferation. , 1989, Science.

[78]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[79]  M. Edwards,et al.  Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. , 1988, Brain research.

[80]  A. Zetterberg,et al.  Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[81]  F. C. Sauer The interkinetic migration of embryonic epithelial nuclei , 1936 .

[82]  後藤 知英 Developmental regulation of the effects of fibroblast growth factor-2 and 1-octanol on neuronogenesis : Implications for a hypothesis relating to mitogen-antimitogen opposition , 2003 .

[83]  Gord Fishell,et al.  The role of notch in promoting glial and neural stem cell fates. , 2002, Annual review of neuroscience.

[84]  Henry Kennedy,et al.  Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. , 2002, Cerebral cortex.

[85]  V. Caviness,et al.  Neuronogenesis and the early events of neocortical histogenesis. , 2000, Results and problems in cell differentiation.

[86]  A. Zetterberg,et al.  What is the restriction point? , 1995, Current opinion in cell biology.

[87]  R.C.A. Pearson,et al.  The human nervous system , 1991 .

[88]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[89]  W. His Die Entwickelung des menschlichen Gehirns : während der ersten Monate , 1904 .