Stability Analysis and Stabilization of Systems With Input Backlash

This technical note deals with the stability analysis and stabilization of linear systems with backlash in the input. Uniform ultimate boundedness stability and stabilization problems are tackled allowing to characterize suitable regions of the state space in which the closed-loop trajectories can be captured. In the state feedback control design, computational oriented solutions are derived to solve suboptimal convex optimization problems able to give a constructive solution.

[1]  M. Khammash,et al.  Analysis and design for robust performance with structured uncertainty , 1993 .

[2]  Thomas Kailath,et al.  The asymptotic stability of nonlinear (Lur'e) systems with multiple slope restrictions , 1998, IEEE Trans. Autom. Control..

[3]  Hartmut Logemann,et al.  Discrete-Time and Sampled-Data Low-Gain Control of Infinite-Dimensional Linear Systems in the Presence of Input Hysteresis , 2002, SIAM J. Control. Optim..

[4]  Maria Letizia Corradini,et al.  Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator , 2002, IEEE Trans. Control. Syst. Technol..

[5]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[6]  M.L. Corradini,et al.  Robust control of nonlinear uncertain systems with sandwiched backlash. , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  M.L. Corradini,et al.  Variable Structure Control of Systems with Sandwiched Backlash , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[8]  Bayu Jayawardhana,et al.  Stability of systems with the Duhem hysteresis operator: The dissipativity approach , 2012, Autom..

[9]  Gang Tao,et al.  Design and analysis of a hybrid control scheme for sandwich nonsmooth nonlinear systems , 2002, IEEE Trans. Autom. Control..

[10]  Mattias Nordin,et al.  Controlling mechanical systems with backlash - a survey , 2002, Autom..

[11]  Ruiyue Ouyang,et al.  Stability analysis and controller design for a system with hysteresis , 2013 .

[12]  P. Olver Nonlinear Systems , 2013 .

[14]  Pramod P. Khargonekar,et al.  Sufficient conditions for robust performance of adaptive controllers with general uncertainty structure , 1992, Autom..

[15]  Bayu Jayawardhana,et al.  Sufficient conditions for dissipativity on Duhem hysteresis model , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[16]  Chun-Yi Su,et al.  Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis , 2000, IEEE Trans. Autom. Control..

[17]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[18]  Isabelle Queinnec,et al.  Stability analysis for linear systems with input backlash through sufficient LMI conditions , 2010, Autom..

[19]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[20]  H. Logemann,et al.  The Circle Criterion and Input-to-State Stability , 2011, IEEE Control Systems.

[21]  Jonathan P. How,et al.  A KYP lemma and invariance principle for systems with multiple hysteresis non-linearities , 2001 .

[22]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[23]  Vito Cerone,et al.  Bounding the parameters of linear systems with input backlash , 2007, Proceedings of the 2005, American Control Conference, 2005..

[24]  J. B. Pearson,et al.  Performance robustness of discrete-time systems with structured uncertainty , 1990, 29th IEEE Conference on Decision and Control.

[25]  Isabelle Queinnec,et al.  ℒ︁2‐Stabilization of continuous‐time linear systems with saturating actuators , 2006 .

[26]  Gang Tao,et al.  Control of sandwich nonlinear systems , 2003 .

[27]  Wassim M. Haddad,et al.  Linear controller analysis and design for systems with input hystereses nonlinearities , 2003, J. Frankl. Inst..

[28]  V. A. Yakubovich,et al.  The method of recursive aim inequalities in adaptive control theory , 1992 .

[29]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[30]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[31]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[32]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[33]  B. D. Coleman,et al.  A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .

[34]  Wassim M. Haddad,et al.  Absolute stability criteria for multiple slope-restricted monotonic nonlinearities , 1995, IEEE Trans. Autom. Control..

[35]  David Angeli,et al.  Systems with counterclockwise input-output dynamics , 2006, IEEE Transactions on Automatic Control.

[36]  Wassim M. Haddad,et al.  Absolute stability criteria for multiple slope-restricted monotonic nonlinearities , 1994, Proceedings of 1994 American Control Conference - ACC '94.