Microstructural design of hard coatings

Microstructural design has attracted increasing interest in modern development of hard coatings for wear-resistant applications. In plasma-assisted vapor deposited thin films, the material's microstructure can be designed during growth or post-deposition annealing treatments. In this review, we demonstrate the correlation between microstructure and mechanical as well as tribological properties of hard ceramic coatings. This is done for single-phase coatings and composition or phase modulated layers. In the latter case, the microstructure can be designed by choice of the deposition technique chosen, understanding the growth processes taking place on a film surface, either by sequential deposition of layers or by taking advantage of newly discovered self-organization processes including segregation effects of the elements. Consequently, the effects of individual microstructural features like grain size, defect density (and hence residual stress), phase arrangements in a one-, two- or three-dimensional manner on the mechanical properties are treated. Here, especially TiN-TiB2 is used as a model system to describe the development of two- and three-dimensional coating nanostructures. Due to their particular structures, such coatings can exhibit superhardness (H = 40 GPa). The microstructural changes of hard ceramic coatings during a post-deposition annealing treatment are discussed in detail. Although the significance of heat treatments to optimize properties (by a well-designed microstructure) for specific applications is recognized in bulk material science, only a few elements have been applied for hard ceramic coatings so far. Due to limited atomic assembly kinetics during the deposition process (e.g., by using a low substrate temperature), defects (point-, line-, and area-defects), supersaturated, and metastable phases can easily be obtained. For example, growth of (Ti,Al)N and Ti(B,N) films can result in the formation of a supersaturated TiN based phase. Such films undergo age hardening processes during post-deposition annealing due to the decomposition of the supersaturated phases into their stable constituents. The review clearly shows that nanostructure dependent hardness increase (compared to hardness of the bulk counterparts) sustains higher annealing temperatures than hardness increase due to an increased density of point- and/or line-defects. Tribological properties of hard thin films can be engineered by adding phases with lubricious properties at operation temperature (either room or elevated temperatures) and prevailing environment. Especially in high speed and dry cutting applications, low-friction and lubricating mechanisms of the thin film itself are required in addition to excellent mechanical properties. © 2006 Elsevier Ltd. All rights reserved.

[1]  F. Schäfers,et al.  Interface engineered ultrashort period Cr-Ti multilayers as high reflectance mirrors and polarizers for soft x rays of lambda = 2.74 nm wavelength. , 2006, Applied optics.

[2]  T. Aizawa,et al.  Self-lubrication of nitride ceramic coating by the chlorine ion implantation , 2003 .

[3]  L. Hultman,et al.  Epitaxial growth of ZrN on Si(100) , 1988 .

[4]  J. Jordan-Sweet,et al.  Interdiffusion studies of single crystal TiN/NbN superlattice thin films , 1999 .

[5]  C. Mitterer,et al.  Low-stress superhard Ti-B films prepared by magnetron sputtering , 2003 .

[6]  R. Murakami,et al.  Behaviors of residual stress and high-temperature fatigue life in ceramic coatings produced by PVD , 2003 .

[7]  L. Karlsson,et al.  Overview no. 63 Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—I. Large scale segregation behaviour , 1988 .

[8]  D. B. Lewis,et al.  The influence of low concentrations of chromium and yttrium on the oxidation behaviour, residual stress and corrosion performance of TiAlN hard coatings on steel substrates , 1999 .

[9]  M. Rȩkas,et al.  The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films , 1997 .

[10]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[11]  Á. Cziráki,et al.  Thermal stability and grain growth of a melt-spun HfNi5 nanophase alloy , 1995 .

[12]  B. Bhushan Modern Tribology Handbook, Two Volume Set , 2000 .

[13]  C. Davis,et al.  A simple model for the formation of compressive stress in thin films by ion bombardment , 1993 .

[14]  Janez Kopac,et al.  Tribology of coated tools in conventional and HSC machining , 2001 .

[15]  U. Jansson,et al.  Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films , 2002 .

[16]  D. B. Lewis,et al.  Large-scale fabrication of hard superlattice thin films by combined steered arc evaporation and unbalanced magnetron sputtering , 1997 .

[17]  J. Schneider,et al.  Recent developments in plasma assisted physical vapour deposition , 2000 .

[18]  I. Ivanov,et al.  Electrostatic Probe Measurements in the Glow Discharge Plasma of a D. C. Magnetron Sputtering System , 1988 .

[19]  H. Gleiter,et al.  Materials with ultrafine microstructures: Retrospectives and perspectives , 1992 .

[20]  L. Hultman,et al.  Influence of residual stresses on the mechanical properties of TiCxN1-x (x = 0, 0.15, 0.45) thin films deposited by arc evaporation , 2000 .

[21]  J. Emmerlich,et al.  Structural, electrical, and mechanical properties of nc-TiC/a-SiC nanocomposite thin films , 2005 .

[22]  H. Brändle,et al.  New hard/lubricant coating for dry machining , 1999 .

[23]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[24]  V. Weihnacht,et al.  Structure and mechanical properties of amorphous Ti–B–N coatings , 1999 .

[25]  Liu Cheng,et al.  Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites , 1988 .

[26]  A. Erdemir,et al.  Relationship of hertzian contact pressure to friction behavior of self-lubricating boric acid films , 1991 .

[27]  Piergiorgio Nicolosi,et al.  Effects of ion bombardment and gas incorporation on the properties of Mo/a-Si:H multilayers for EUV applications , 2003 .

[28]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[29]  C. Mitterer,et al.  Structure–property relationships in single- and dual-phase nanocrystalline hard coatings , 2003 .

[30]  Christian Mitterer,et al.  Sputter deposition of ultrahard coatings within the system Ti-B-C-N , 1990 .

[31]  K. Holmberg Coatings Tribology: Properties, Techniques and Applications in Surface Engineering , 1994 .

[32]  J. Hafner,et al.  ADSORPTION OF THIOPHENE ON THE CATALYTICALLY ACTIVE SURFACE OF MOS2 : AN AB INITIO LOCAL-DENSITY-FUNCTIONAL STUDY , 1998 .

[33]  W. Sproul,et al.  Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactive magnetron sputtering , 1998 .

[34]  R. W. Siegel,et al.  Mechanical properties of nanophase metals , 1994 .

[35]  A. Romanov Continuum theory of defects in nanoscaled materials , 1995 .

[36]  W. Sproul,et al.  Thermal behavior of carbon nitride and TiN/NbN superlattice films , 1995 .

[37]  B. North Six issues for the hard coatings community , 1998 .

[38]  W. Münz,et al.  Morphology and properties of sputtered (Ti,Al)N layers on high speed steel substrates as a function of deposition temperature and sputtering atmosphere , 1986 .

[39]  I. L. Singer,et al.  Role of third bodies in friction and wear of protective coatings , 2003 .

[40]  S. Kodambaka,et al.  Directed nanostructural evolution in Ti0.8Ce0.2N layers grown as a function of low-energy, high-flux ion irradiation , 2004 .

[41]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[42]  M. Ashby,et al.  Engineering Materials 2: An Introduction to Microstructures, Processing and Design , 1986 .

[43]  I. Petrov,et al.  Polycrystalline TiN films deposited by reactive bias magnetron sputtering: Effects of ion bombardment on resputtering rates, film composition, and microstructure , 1992 .

[44]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[45]  C. Mitterer,et al.  Self-organized nanostructures in the Ti–Al–N system , 2003 .

[46]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[47]  T. Suszko,et al.  Tribological properties of silver- and copper-doped transition metal oxide coatings , 2003 .

[48]  D. Teer,et al.  New solid lubricant coatings , 2001 .

[49]  H. Holleck Metastable coatings — Prediction of composition and structure , 1988 .

[50]  H. Kappl,et al.  Effects of low boron concentrations on the thermal stability of hard coatings , 1997 .

[51]  L. Donohue,et al.  Properties of various large-scale fabricated TiAlN- and CrN-based superlattice coatings grown by combined cathodic arc–unbalanced magnetron sputter deposition , 2000 .

[52]  Bharat Bhushan,et al.  Modern tribology handbook, Volume 1 , 2001 .

[53]  D. Campbell,et al.  A sensitive bending beam apparatus for measuring the stress in evaporated thin films , 1969 .

[54]  Yun Wang,et al.  Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices , 1998 .

[55]  Eric Ziegler,et al.  Stability of tungsten/carbon and tungsten/silicon multilayer x‐ray mirrors under thermal annealing and x‐radiation exposure , 1991 .

[56]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[57]  Young-ki Lee,et al.  Thermal stability and interfacial reaction of TiBx films deposited on (100)Si by dual-electron-beam evaporation , 2002 .

[58]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[59]  Lev Rapoport,et al.  Applications of WS2(MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites , 2005 .

[60]  T. P. Weihs,et al.  The effect of grain size on the yield strength of Ni3Al , 1985 .

[61]  C. Mitterer,et al.  Self-organized nanocolumnar structure in superhard TiB2 thin films , 2005 .

[62]  H. Holleck Material selection for hard coatings , 1986 .

[63]  D. B. Lewis,et al.  Recent progress in large scale manufacturing of multilayer/superlattice hard coatings , 2000 .

[64]  Christensen,et al.  Calculated structural phase transitions of aluminum nitride under pressure. , 1993, Physical review. B, Condensed matter.

[65]  G. Ramanath,et al.  The influence of thermal annealing on residual stresses and mechanical properties of arc-evaporated TiCxN1−x (x=0, 0.15 and 0.45) thin films , 2002 .

[66]  S. Vepřek The search for novel, superhard materials , 1999 .

[67]  Christian Mitterer,et al.  Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings , 2004 .

[68]  A. Bergmaier,et al.  Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: a comparative study of their properties , 2003 .

[69]  M. Wong,et al.  Deposition and characterization of Ti–B–N monolithic and multilayer coatings , 1999 .

[70]  W. Gissler,et al.  Tribological behaviour of homogeneous Ti-B-N, Ti-B-N-C and TiN/h-BN/TiB2 multilayer coatings , 1996 .

[71]  H. Oettel,et al.  Tempering behaviour of TiB2 coatings , 1998 .

[72]  M. Woydt,et al.  Tribological properties of thermal-sprayed Magnéli-type coatings with different stoichiometries (TinO2n−1) , 2001 .

[73]  Effect of chlorine distribution profiles on tribological properties for chlorine-implanted titanium nitride films , 2002 .

[74]  J. Patscheider,et al.  Structure-performance relations in nanocomposite coatings , 2001 .

[75]  D. B. Lewis,et al.  Structural determination of wear debris generated from sliding wear tests on ceramic coatings using Raman microscopy , 2000 .

[76]  S. Kodambaka,et al.  TiN(001) and TiN(111) island coarsening kinetics: in-situ scanning tunneling microscopy studies , 2001 .

[77]  T. Suzuki,et al.  Microstructure and secular instability of the (Ti1 − x,Alx)N films prepared by ion-beam-assisted-deposition , 2000 .

[78]  W. Münz Titanium aluminum nitride films: A new alternative to TiN coatings , 1986 .

[79]  Hongwei Zhu,et al.  Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity , 2002 .

[80]  M. Larsson,et al.  Low stress TiB2 coatings with improved tribological properties , 2001 .

[81]  A. G. Cullis,et al.  Investigation of intermixing in TiAlN/VN nanoscale multilayer coatings by energy-filtered TEM , 2002 .

[82]  Ponniah Vajeeston,et al.  Electronic structure, bonding, and ground-state properties of AlB 2 -type transition-metal diborides , 2001 .

[83]  Christian Mitterer,et al.  Recrystallization and grain growth of nanocomposite Ti–B–N coatings , 2003 .

[84]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[85]  S. Vepřek,et al.  Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1−yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond , 1999 .

[86]  C. Mitterer,et al.  Thermal annealing of sputtered Al-Si-Cu-N films , 2003 .

[87]  M. Odén,et al.  Microstructural evolution during tempering of arc-evaporated Cr–N coatings , 2000 .

[88]  S. Vepřek,et al.  Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides , 2001 .

[89]  P. Yashar,et al.  Stabilization of Cubic AlN in Epitaxial AlN/TiN Superlattices , 1997 .

[90]  Michel Belin,et al.  The origin of super-low friction coefficient of MoS2 coatings in various environments , 1994 .

[91]  Hyoung-Seop Kim A composite model for mechanical properties of nanocrystalline materials , 1998 .

[92]  W. Sproul,et al.  SYNTHESIS OF SUPERHARD CARBON NITRIDE COMPOSITE COATINGS , 1995 .

[93]  Christian Mitterer,et al.  A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings , 2002 .

[94]  A. Madan,et al.  Stability of Nanometer-Thick Layers in Hard Coatings , 2003 .

[95]  H. Holleck Binäre und ternäre Carbid- und Nitridsysteme der Übergangsmetalle , 1984 .

[96]  J. Schneider,et al.  Towards Large Area MAX Phase Coatings on Steel , 2005 .

[97]  R. Ahuja,et al.  Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations , 2004 .

[98]  D. M. Marsh,et al.  Plastic flow in glass , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[99]  C. Suryanarayana Nanocrystalline Materials-an Overview , 1996 .

[100]  R. Hauert,et al.  Control of the tribological moisture sensitivity of diamond-like carbon films by alloying with F, Ti or Si , 2001 .

[101]  K. Thoma,et al.  Analysis of r.f.-sputtered TiB2 hard coatings by means of X-ray diffractometry and Auger electron spectroscopy , 1991 .

[102]  J. Schneider,et al.  Ab initio calculated binodal and spinodal of cubic Ti1−xAlxN , 2006 .

[103]  J. Sundgren,et al.  Structure and properties of TiN coatings , 1985 .

[104]  C. Mitterer,et al.  Low-friction TiN coatings deposited by PACVD , 2003 .

[105]  S. Dreer,et al.  Can oxygen stabilize chromium nitride?—Characterization of high temperature cycled chromium oxynitride , 2004 .

[106]  J. G. Ryan,et al.  The preparation and characterization of titanium boride films , 1987 .

[107]  W. M. Rainforth,et al.  Elemental distributions and substrate rotation in industrial TiAlN/VN superlattice hard PVD coatings , 2004 .

[108]  P. Mayrhofer Thermal Stability and Self-Arrangement of Nanocrystalline Hard Coatings , 2004 .

[109]  J. Musil,et al.  Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering , 2000 .

[110]  I. L. Singer,et al.  Fundamentals of friction : macroscopic and microscopic processes , 1992 .

[111]  W. Gissler Structure and properties of Ti-B-N coatings , 1994 .

[112]  P. N. Gibson,et al.  Comparative investigation of multilayer TiB2/C and co-sputtered TiB2-C coatings for low-friction applications , 1999 .

[113]  C. Mitterer,et al.  Characterization of tribo-layers on self-lubricating plasma-assisted chemical-vapor-deposited TiN coatings , 2004 .

[114]  J. Abelson,et al.  Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures , 1994 .

[115]  George R. Fenske,et al.  Synthesis of diamondlike carbon films with superlow friction and wear properties , 2000 .

[116]  M. Jílek,et al.  Present and possible future applications of superhard nanocomposite coatings , 2000 .

[117]  D. Tabor Hardness of Metals , 1937, Nature.

[118]  S. Rossnagel Energetic particle bombardment of films during magnetron sputtering , 1989 .

[119]  C. Mitterer,et al.  A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings , 2004 .

[120]  H. Holleck ADVANCED CONCEPTS OF PVD HARD COATINGS , 1990 .

[121]  D. M. Mattox Particle bombardment effects on thin‐film deposition: A review , 1989 .

[122]  K. Rie,et al.  Development of titanium diboride coatings deposited by PACVD , 2000 .

[123]  H. Windischmann An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering , 1987 .

[124]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[125]  R. Andrievski Films of interstitial phases: synthesis and properties , 1997 .

[126]  J. Musil,et al.  Magnetron sputtering of films with controlled texture and grain size , 1998 .

[127]  J. Emmerlich,et al.  Epitaxial Ti_2GeC, Ti_3GeC_2, and Ti_4GeC_3 MAX-phase thin films grown by magnetron sputtering , 2005 .

[128]  M. Zawrah,et al.  Thermal stability of nc-TiN/a-BN/a-TiB2 nanocomposite coatings deposited by plasma chemical vapor deposition , 2004 .

[129]  A. Magnéli,et al.  Structures of the ReO3‐type with recurrent dislocations of atoms: `homologous series' of molybdenum and tungsten oxides , 1953 .

[130]  A. Kimura,et al.  Effects of Al content on hardness, lattice parameter and microstructure of Ti1-xAlxN films , 1999 .

[131]  A. Müller The Structure of Metals , 1881, The American journal of dental science.

[132]  L. Jinhua,et al.  Valence reduction process from sol–gel V2O5 to VO2 thin films , 2002 .

[133]  P. N. Gibson,et al.  Low-friction TiN–MoS2 coatings produced by dc magnetron co-deposition , 1998 .

[134]  E. Stach,et al.  In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films , 2000 .

[135]  J. Langford,et al.  A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function , 1978 .

[136]  Robert W. Cahn,et al.  Materials science and technology : a comprehensive treatment , 2000 .

[137]  L. Marks,et al.  Structures of AlN/VN Superlattices with Different AlN Layer Thicknesses , 2002 .

[138]  D. B. Lewis,et al.  Industrial scale manufactured superlattice hard PVD coatings , 2001 .

[139]  W. Sproul,et al.  Deposition, structure, and hardness of polycrystalline transition-metal nitride superlattice films , 1999 .

[140]  P. K. Gallagher,et al.  Handbook of thermal analysis and calorimetry , 1998 .

[141]  R. Andrievski,et al.  Structure and microhardness of TiN compositional and alloyed films , 1991 .

[142]  Christian Mitterer,et al.  Borides in Thin Film Technology , 1997 .

[143]  G. Höhne,et al.  Differential Scanning Calorimetry , 2007 .

[144]  S. E. Franklin,et al.  A comparison of the tribological behaviour of several wear-resistant coatings , 1992 .

[145]  Kirsten Bobzin,et al.  Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications , 2000 .

[146]  Sture Hogmark,et al.  Design and evaluation of tribological coatings , 2000 .

[147]  G. Fenske,et al.  Effect of source gas chemistry on tribological performance of diamond-like carbon films. , 1999 .

[148]  D. B. Lewis,et al.  The effect of (Ti+Al):V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings , 2004 .

[149]  Eberhart,et al.  Localized grain-boundary electronic states and intergranular fracture. , 1987, Physical review letters.

[150]  E. Broszeit,et al.  The influence of a heat treatment on the microstructure and mechanical properties of sputtered coatings , 1997 .

[151]  Andrey A. Voevodin,et al.  Supertough wear-resistant coatings with ‘chameleon’ surface adaptation , 2000 .

[152]  M. Woydt,et al.  Wear engineering oxides/anti-wear oxides , 1998 .

[153]  C. Mitterer,et al.  Low-friction PACVD TiN coatings: influence of Cl-content and testing conditions on the tribological properties , 2003 .

[154]  M. Stoiber,et al.  Industrial applications of PACVD hard coatings , 2003 .

[155]  P. A. Willermet,et al.  Amorphous hydrogenated carbon films for tribological applications I. Development of moisture insensitive films having reduced compressive stress , 1997 .

[156]  P. Mayrhofer,et al.  Thermal stability of superhard Ti–B–N coatings , 2007 .

[157]  Y. Liu,et al.  An investigation of the relationship between graphitization and frictional behavior of DLC coatings , 1996 .

[158]  W. Münz,et al.  PROPERTIES OF CrN AND (Ti, Al)N COATINGS PRODUCED BY HIGH RATE SPUTTER DEPOSITION , 1987 .

[159]  O. Knotek,et al.  On spinodal decomposition in magnetron-sputtered (Ti,Zr) nitride and carbide thin films☆ , 1989 .

[160]  W. Ensinger Low energy ion assist during deposition — an effective tool for controlling thin film microstructure , 1997 .

[161]  L. J. Thompson,et al.  Atomic-scale observation of grain boundary motion , 2001 .

[162]  S. Barnett,et al.  Model of superlattice yield stress and hardness enhancements , 1995 .

[163]  L. Alexander,et al.  X-ray diffraction procedures , 1954 .

[164]  C. Ferdeghini,et al.  Pulsed laser deposition of epitaxial titanium diboride thin films , 2003 .

[165]  S. V. Subramanian,et al.  Tribology of tool–chip interface and tool wear mechanisms , 2002 .

[166]  C. Mitterer,et al.  Thermal stability of PVD hard coatings , 2003 .

[167]  C. Bindal,et al.  Tribology of naturally occurring boric acid films on boron carbide , 1996 .

[168]  O. Knotek,et al.  On structure and properties of sputtered Ti and Al based hard compound films , 1986 .

[169]  H. Oettel,et al.  Structure of deposited and annealed TiB2 layers , 1997 .

[170]  L. Hultman Thermal stability of nitride thin films , 2000 .

[171]  A. Damask,et al.  Point Defects in Metals , 1964 .

[172]  R. Cremer,et al.  Plasma-enhanced CVD of Ti,Al N films from chloridic precursors in a DC glow discharge , 2000 .

[173]  A. Ruoff,et al.  Pressure‐induced rocksalt phase of aluminum nitride: A metastable structure at ambient condition , 1993 .

[174]  S. Hogmark,et al.  Tribological simulation of aluminium hot extrusion , 1999 .

[175]  A. Voevodin,et al.  Nanocomposite and nanostructured tribological materials for space applications , 2005 .

[176]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[177]  E. Lugscheider,et al.  Properties of tungsten and vanadium oxides deposited by MSIP–PVD process for self-lubricating applications , 1999 .

[178]  Margaret Stack,et al.  Proceedings of the World Tribology Congress , 1997 .

[179]  A. Argon,et al.  Mechanical properties of superhard nanocomposites , 2001 .

[180]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[181]  M. Larsson,et al.  Evaluation of magnetron-sputtered TiB2 intended for tribological applications , 2000 .

[182]  C. Eggs,et al.  Thermal stability of ZrN–Ni and CrN–Ni superhard nanocomposite coatings , 2001 .

[183]  J. Procházka,et al.  Different approaches to superhard coatings and nanocomposites , 2005 .

[184]  D. G. Teer,et al.  Performance of MoS2/metal composite coatings used for dry machining and other industrial applications☆ , 2000 .

[185]  T. Fischer,et al.  The effects of oxygen and humidity on friction and wear of diamond-like carbon films , 1991 .

[186]  C. Donnet Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review , 1998 .

[187]  S. H. Goods,et al.  Overview No. 1: The nucleation of cavities by plastic deformation , 1979 .

[188]  W. Sproul Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings , 1996 .

[189]  R. Bunshah Handbook of deposition technologies for films and coatings , 1994 .

[190]  S. Barnett,et al.  Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness , 1987 .

[191]  A. Grill Diamond-like carbon: state of the art , 1999 .

[192]  P. Barna,et al.  Fundamental structure forming phenomena of polycrystalline films and the structure zone models , 1998 .

[193]  S. Vepřek,et al.  Search for superhard materials: Nanocrystalline composites with hardness exceeding 50 GPa , 1998 .

[194]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[195]  G. Fenske,et al.  Preparation of ultralow-friction surface films on vanadium diboride. , 1996 .

[196]  J. Emmerlich,et al.  Growth of Ti3SiC2 thin films by elemental target magnetron sputtering , 2004 .

[197]  E. Kisi,et al.  Ultra-low friction for a layered carbide-derived ceramic, , investigated by lateral force microscopy (LFM) , 1999 .

[198]  J. Schneider,et al.  Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1- xAlxN , 2006 .

[199]  Mark Bush,et al.  The effects of grain size and porosity on the elastic modulus of nanocrystalline materials , 1999 .

[200]  I. Petrov,et al.  Epitaxial growth of metastable δ-TaN layers on MgO(001) using low-energy, high-flux ion irradiation during ultrahigh vacuum reactive magnetron sputtering , 2002 .

[201]  C. Mitterer,et al.  Application of hard coatings in aluminium die casting — soldering, erosion and thermal fatigue behaviour , 2000 .

[202]  A. Zalar,et al.  Oxidation behaviour of TiAlN coatings sputtered at low temperature , 1999 .

[203]  Peter Panjan,et al.  Interface characterization of combination hard/solid lubricant coatings by specific methods , 2002 .

[204]  M. Odén,et al.  Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools , 2005 .

[205]  W. Sproul,et al.  Structure and hardness studies of CNx/TiN nanocomposite coatings , 1996 .

[206]  C. Mitterer,et al.  Morphology and Microstructure of Hard and Superhard Zr–Cu–N Nanocomposite Coatings , 2002 .

[207]  T. Seong,et al.  Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition , 2002 .

[208]  S. Vepřek,et al.  Novel thermodynamically stable and oxidation resistant superhard coating materials , 1996 .

[209]  E. Arzt,et al.  Microstructural size effects on the hardness of nanocrystalline TiN/amorphous-SiNx coatings prepared by magnetron sputtering , 2005 .

[210]  H. Oettel,et al.  Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation , 1995 .

[211]  R. Andrievski Review Stability of nanostructured materials , 2003 .

[212]  E. Badisch,et al.  ADHESION AND WEAR PROPERTIES OF HARD COATINGS ON TOOL STEELS , 2001 .

[213]  S. Nazaré Metallkunde für ingenieure: A.G. Guy, Bearbeiter der Deutschen Ausgabe: G. Petzow (Akademische Verlags-Gesellschaft, Frankfurt a.M.) , 1975 .

[214]  L. Hultman,et al.  Enhanced hardness in lattice‐matched single‐crystal TiN/V0.6Nb0.4N superlattices , 1990 .

[215]  F. Kauffmann Mikrostruktur und Eigenschaften von Titannitrid/Siliciumnitrid-Schichten , 2003 .

[216]  G. Radnóczi,et al.  Growth and Characterization of Epitaxial Wurtzite Al1-xInxN Thin Films Deposited by UHV Reactive Dual DC Magnetron Sputtering , 2003 .

[217]  A. S. Argon,et al.  The strongest size , 2006 .

[218]  H. Clemens,et al.  Self‐Organized Nanostructures in Hard Ceramic Coatings , 2005 .

[219]  C. L. White,et al.  Grain boundary cohesion and fracture in ordered intermetallics , 1991 .

[220]  C. Mitterer,et al.  High-temperature properties of nanocomposite TiBxNy and TiBxCy coatings , 2000 .

[221]  G. Pharr,et al.  On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying , 1995 .

[222]  T. Barbee,et al.  Synthesis of amorphous niobium-nickel alloys by vapor quenching , 1977 .

[223]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[224]  H. Oettel,et al.  Residual stresses in PVD hard coatings , 1995 .

[225]  H. Holleck,et al.  Multilayer coatings—influence of fabrication parameters on constitution and properties , 1990 .

[226]  I. Petrov,et al.  Defect structure and phase transitions in epitaxial metastable cubic Ti0.5Al0.5N alloys grown on MgO(001) by ultra‐high‐vacuum magnetron sputter deposition , 1991 .

[227]  P. N. Gibson,et al.  Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings , 1999 .

[228]  J. Greene,et al.  Oxidation of metastable single‐phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms , 1990 .

[229]  M. Baker,et al.  Nanostructured titanium boron nitride coatings of very high hardness , 1995 .

[230]  Gernot Kostorz,et al.  Phase Transformations in Materials , 2001 .

[231]  A. Argon,et al.  Towards the understanding of mechanical properties of super- and ultrahard nanocomposites , 2002 .

[232]  H. Holleck,et al.  Multilayer PVD coatings for wear protection , 1995 .

[233]  M. Yoshitake,et al.  Self-lubrication mechanism of chlorine implanted TiN coatings , 2003 .

[234]  S. Deevi,et al.  Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review , 2003 .

[235]  Ola Wilhelmsson,et al.  Growth and characterization of MAX-phase thin films , 2005 .

[236]  H. Holleck,et al.  Preparation and behaviour of wear-resistant TiC/TiB2, TiN/TiB2 and TiC/TiN coatings with high amounts of phase boundaries☆ , 1988 .

[237]  E. J. Mittemeijer,et al.  Diffraction analysis of the microstructure of materials , 2004 .

[238]  L. Hultman,et al.  Fullerene-like Carbon Nitride: A Resilient Coating Material , 2003 .

[239]  C. Mitterer,et al.  Interfaces in nanostructured thin films and their influence on hardness , 2005 .

[240]  E. J. Mittemeijer,et al.  Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening , 1982 .

[241]  Activation Energy of Point Defect Diffusion in Low-Temperature Deposited TiN , 1995 .

[242]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[243]  E. Broszeit,et al.  Fundamental properties and wear resistance of r.f.-sputtered TiB2 and Ti(B,N) coatings , 1991 .

[244]  P. Rao,et al.  Effect of thermomechanical treatment on the phase transformation in Cu-44Ni-5Cr alloy , 1994, Journal of Materials Science.

[245]  A. Perry On the existence of point defects in physical vapor deposited films of TiN, ZrN, and HfN , 1988 .

[246]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[247]  D. Tallant,et al.  The thermal stability of diamond-like carbon , 1995 .

[248]  C. Mitterer,et al.  Age hardening of PACVD TiBN thin films , 2005 .

[249]  S. Vepřek,et al.  A concept for the design of novel superhard coatings , 1995 .

[250]  S. Vepřek,et al.  Super- and ultrahard nanacomposite coatings: generic concept for their preparation, properties and industrial applications , 2002 .

[251]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[252]  K. Bewilogua,et al.  Preparation of W-C:H coatings by reactive magnetron sputtering , 1993 .

[253]  J. Verhoeven Fundamentals of Physical Metallurgy , 1975 .

[254]  J. Musil Hard and superhard nanocomposite coatings , 2000 .

[255]  H. Hugosson,et al.  Theory of the effects of substitutions on the phase stabilities of Ti1-xAlxN , 2003 .

[256]  R. Cahn,et al.  Phase transformations in materials , 1991 .

[257]  H. Jehn,et al.  Selective oxidation and chemical state of Al and Ti in (Ti, Al)n coatings , 1988 .

[258]  R. Munro Material Properties of Titanium Diboride , 2000, Journal of research of the National Institute of Standards and Technology.

[259]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[260]  Homer E. KlSSlNGER Reaction Kinetics in Differential Thermal Analysis , 1957 .

[261]  I. Petrov,et al.  Microstructure modification of TiN by ion bombardment during reactive sputter deposition , 1989 .

[262]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[263]  S. Vepřek,et al.  Recent progress in the superhard nanocrystalline composites : towards their industrialization and understanding of the origin of the superhardness , 1998 .

[264]  E. Frykberg,et al.  Triage: Principles and Practice , 2005, Scandinavian journal of surgery : SJS : official organ for the Finnish Surgical Society and the Scandinavian Surgical Society.

[265]  P. Sidky,et al.  Metallic and ceramic coatings : production, high temperature properties and applications , 1989 .

[266]  L. Donohue,et al.  Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings , 1997 .

[267]  C. Mitterer,et al.  Structure–property relations in Cr–C/a-C:H coatings deposited by reactive magnetron sputtering , 2005 .

[268]  C. Héau,et al.  Study of thermal stability of some hard nitride coatings deposited by reactive magnetron sputtering , 1999 .

[269]  M. Nastasi,et al.  Present progress in the development of low friction coatings , 1996 .

[270]  E. Rudy Boundary phase stability and critical phenomena in higher order solid solution systems , 1973 .

[271]  S. Ulrich,et al.  Correlation between plasma particle fluxes, microstructure and properties of titanium diboride thin films , 2003 .

[272]  V. Gerold,et al.  On the Critical Resolved Shear Stress of Solid Solutions Containing Coherent Precipitates , 1966, August 1, 1966.

[273]  P. N. Gibson,et al.  NANOCRYSTALLINE HARD COATINGS WITHIN THE QUASI-BINARY SYSTEM TIN-TIB2 , 1998 .

[274]  C. Mitterer,et al.  Nanocomposite coatings within the system Ti–B–N deposited by plasma assisted chemical vapor deposition , 2003 .

[275]  C. Mitterer,et al.  A new low-friction concept for Ti1−xAlxN based coatings in high-temperature applications , 2004 .

[276]  L. Hultman,et al.  Single-crystal Ti2AlN thin films , 2005 .

[277]  M. Odén,et al.  Mechanical and thermal stability of TiN/NbN superlattice thin films , 2000 .

[278]  K. Bewilogua,et al.  Properties of duplex coatings prepared by plasma nitriding and PVD Ti–C:H deposition on X20Cr13 ferritic stainless steel , 1998 .

[279]  C. Mitterer,et al.  Tribological behavior of PACVD TiN coatings in the temperature range up to 500 °C , 2003 .

[280]  E. Arzt Size effects in materials due to microstructural and dimensional constraints: a comparative review , 1998 .

[281]  W. Sproul,et al.  Preparation and characterization of superhard CNx/ZrN multilayers , 1997 .

[282]  Rui F. Silva,et al.  Tribological behaviour of Si3N4–BN ceramic materials for dry sliding applications , 2002 .

[283]  M. Odén,et al.  Thermal stability of arc evaporated high aluminum-content Ti1−xAlxN thin films , 2002 .

[284]  S. Vitta,et al.  Thermal stability of 2.4 nm period Ni–Nb/C multilayer x-ray mirror , 2000 .

[285]  H. Bai,et al.  Interdiffusion in low-temperature annealed amorphous CoMoN/CN compound soft-x-ray optical multilayer mirrors , 2003 .

[286]  T. Bolom,et al.  The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites , 2001 .

[287]  W. Münz Large-Scale Manufacturing of Nanoscale Multilayered Hard Coatings Deposited by Cathodic Arc/Unbalanced Magnetron Sputtering , 2003 .

[288]  R. Scattergood,et al.  A modified model for hall-petch behavior in nanocrystalline materials , 1992 .

[289]  C. Mitterer,et al.  Microstructure and mechanical/thermal properties of Cr–N coatings deposited by reactive unbalanced magnetron sputtering , 2001 .

[290]  T. J. Allen,et al.  Advantages of using self-lubricating, hard, wear-resistant mos2-based coatings , 2001 .

[291]  R. Kirchheim Grain coarsening inhibited by solute segregation , 2002 .

[292]  G. Borchardt,et al.  Thermal stability and crystallization kinetics of sputtered amorphous Si3N4 films , 2004 .

[293]  P. Dearnley,et al.  Wear mechanisms of coated carbide tools , 1982 .

[294]  A. A. Voevodin,et al.  Nanocomposite tribological coatings for aerospace applications , 1999 .

[295]  T. Bolom,et al.  Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV= 80 to ≥ 105 GPa , 2000 .

[296]  J. Patscheider,et al.  Nanocomposite TiC/a–C:H hard coatings deposited by reactive PVD , 2000 .

[297]  P. Blau,et al.  Effect of grain size on friction and wear behavior of Ti3SiC2 , 2000 .

[298]  Lars Hultman,et al.  Microstructural evolution during film growth , 2003 .

[299]  U. Jansson,et al.  Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering , 2004 .

[300]  P. Zeman,et al.  ZrN/Cu nanocomposite film—a novel superhard material , 1999 .

[301]  I. Petrov,et al.  Improved Ti1–xAlxN PVD Coatings for Dry High Speed Cutting Operations , 1998 .

[302]  W. Münz,et al.  Recent progress in large-scale production of nanoscale multilayer/superlattice hard coatings , 2002 .

[303]  C. Mitterer,et al.  Structure, mechanical and tribological properties of sputtered Ti1–xAlxN coatings with 0.5≤x≤0.75 , 2005 .