Spatial-temporal multivariate semi-Bayesian hierarchical framework for extreme precipitation frequency analysis

Abstract We present a semi-Bayesian hierarchical modeling framework for conducting space-time frequency analysis of precipitation extremes over a large domain. In this framework, the data layer, the precipitation extreme - i.e., seasonal maximum precipitation, at each station in each year is modeled using a generalized extreme value (GEV) distribution with temporally varying parameters, which are decomposed as linear functions of covariates. The coefficients of the covariates are estimated via maximum likelihood (ML). In the process layer, the estimated ML coefficients of each of the covariates across the stations are spatially modeled with a Gaussian multivariate process which enables capturing the spatial structure and correlation between the spatial model parameters. Suitable priors are used for the spatial model hyperparameters to complete the Bayesian formulation. Since the Bayesian formulation is only at the second level, our model is semi-Bayesian and thus, the posteriors are conditional posterior distributions. With the conditional posterior distribution of spatial fields of the GEV parameters for each time, conditional posterior distribution of the nonstationary space-time return levels of the precipitation extremes are obtained. We demonstrate this framework by application to summer precipitation extreme at 73 stations covering a large domain of Southwest US consisting of Arizona, New Mexico, Colorado, and Utah. The results from fitting and cross validation indicate that our model captures the historical variability at the stations very well. Conditional posterior distributions of return levels are simulated on a grid over the domain, which will be of immense utility in management of natural resources and infrastructure.

[1]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[3]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[4]  R. Stouffer,et al.  Stationarity Is Dead: Whither Water Management? , 2008, Science.

[5]  T. Kenny,et al.  CORRIGENDUM: Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators , 2014, Scientific Reports.

[6]  M. Haylock,et al.  Observed coherent changes in climatic extremes during the second half of the twentieth century , 2002 .

[7]  C. Field,et al.  Robust estimation of extremes , 1998 .

[8]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .

[9]  A. Aghakouchak Extremes in a Changing Climate: Detection, Analysis and Uncertainty , 2013 .

[10]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[11]  Aloke Phatak,et al.  A max-stable process model for rainfall extremes at different accumulation durations , 2016 .

[12]  Mohammad Najafi,et al.  Analysis of runoff extremes using spatial hierarchical Bayesian modeling , 2013 .

[13]  Michael A. Palecki,et al.  Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[15]  Upmanu Lall,et al.  A hierarchical Bayesian regional model for nonstationary precipitation extremes in Northern California conditioned on tropical moisture exports , 2015 .

[16]  S. Gangopadhyay,et al.  Spatial Bayesian hierarchical modeling of precipitation extremes over a large domain , 2015, 1512.08560.

[17]  D. Wuebbles,et al.  Modeling nonstationary extreme value distributions with nonlinear functions: An application using multiple precipitation projections for U.S. cities , 2017 .

[18]  T. Ouarda,et al.  Generalized maximum likelihood estimators for the nonstationary generalized extreme value model , 2007 .

[19]  N. Cressie,et al.  Multivariable spatial prediction , 1994 .

[20]  R. Higgins,et al.  Interannual Variability of the North American Warm Season Precipitation Regime , 1999 .

[21]  Christopher A. T. Ferro,et al.  A nonstationary index flood model for precipitation extremes in transient regional climate model simulations , 2009 .

[22]  A. Aghakouchak,et al.  Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate , 2014, Scientific Reports.

[23]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[24]  Stuart G. Coles,et al.  Regional Modelling of Extreme Storms Via Max‐Stable Processes , 1993 .

[25]  T. Ouarda,et al.  Bayesian Nonstationary Frequency Analysis of Hydrological Variables 1 , 2011 .

[26]  Andrew O. Finley,et al.  spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models , 2013, 1310.8192.

[27]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[28]  Thordis L. Thorarinsdottir,et al.  Bayesian hierarchical modeling of extreme hourly precipitation in Norway , 2013, 1309.6111.

[29]  Ying Sun,et al.  A Valid Matérn Class of Cross-Covariance Functions for Multivariate Random Fields With Any Number of Components , 2012 .

[30]  B. Rajagopalan,et al.  A Bayesian Hierarchical Approach to Multivariate Nonstationary Hydrologic Frequency Analysis , 2018 .

[31]  K. Wolter,et al.  El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext) , 2011 .

[32]  Dörte Jakob,et al.  Nonstationarity in Extremes and Engineering Design , 2013 .

[33]  Stephan R. Sain,et al.  Spatial Hierarchical Modeling of Precipitation Extremes From a Regional Climate Model , 2008 .

[34]  Laura Read,et al.  Reliability, return periods, and risk under nonstationarity , 2015 .

[35]  Richard W. Katz,et al.  Statistical Methods for Nonstationary Extremes , 2013 .

[36]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[37]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[38]  T. Ouarda,et al.  Depth‐based regional index‐flood model , 2013 .

[39]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[40]  Alex J. Cannon A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology , 2010 .

[41]  K. Wolter,et al.  Measuring the strength of ENSO events: How does 1997/98 rank? , 1998 .

[42]  Malcolm K. Hughes,et al.  The climate of the US Southwest , 2002 .

[43]  Upmanu Lall,et al.  A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates , 2016 .

[44]  R. Katz,et al.  Non-stationary extreme value analysis in a changing climate , 2014, Climatic Change.

[45]  Eric Gilleland,et al.  ExtRemes 2.0: An extreme value analysis package in R , 2016 .

[46]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[47]  Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields , 2013, Environmental and Ecological Statistics.

[48]  David Walshaw,et al.  A region‐based hierarchical model for extreme rainfall over the UK, incorporating spatial dependence and temporal trend , 2012 .

[49]  K. Mo,et al.  Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products , 2012 .

[50]  J. Wallace,et al.  ENSO-like Interdecadal Variability: 1900–93 , 1997 .

[51]  David M. Hershfield,et al.  Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years , 1961 .

[52]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[53]  H. Akaike A new look at the statistical model identification , 1974 .

[54]  Ronald van Haren,et al.  Evaluation of modeled changes in extreme precipitation in Europe and the Rhine basin , 2013 .

[55]  J. Salas,et al.  Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events , 2014 .

[56]  Luca Vogt Statistics For Spatial Data , 2016 .

[57]  Michel Lang,et al.  A general regional frequency analysis framework for quantifying local-scale climate effects: A case study of ENSO effects on Southeast Queensland rainfall , 2014 .

[58]  T. Gneiting,et al.  Matérn Cross-Covariance Functions for Multivariate Random Fields , 2010 .

[59]  N. V. Umamahesh,et al.  Is the covariate based non-stationary rainfall IDF curve capable of encompassing future rainfall changes? , 2016 .

[60]  Meng Gao,et al.  Nonstationary modeling of extreme precipitation in China , 2016 .

[61]  Hongxiang Yan,et al.  Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling , 2016, Natural Hazards.

[62]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[63]  D. Wilks Comparison of three‐parameter probability distributions for representing annual extreme and partial duration precipitation series , 1993 .

[64]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[65]  D. Gellens Combining regional approach and data extension procedure for assessing GEV distribution of extreme precipitation in Belgium , 2002 .

[66]  R. Palmer,et al.  A hierarchical Bayesian model for regionalized seasonal forecasts: Application to low flows in the northeastern United States , 2017 .

[67]  Hongxiang Yan,et al.  A regional Bayesian hierarchical model for flood frequency analysis , 2015, Stochastic Environmental Research and Risk Assessment.

[68]  Athanasios Loukas,et al.  Nonstationary Frequency Analysis of Annual Maximum Rainfall Using Climate Covariates , 2014, Water Resources Management.

[69]  C. Frei,et al.  Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century , 2005 .

[70]  Noel A Cressie,et al.  Multivariable spatial prediction , 1993 .

[71]  M. Alava,et al.  Machine learning plastic deformation of crystals , 2018, Nature Communications.

[72]  W. Landman Climate change 2007: the physical science basis , 2010 .

[73]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[74]  R. Vose,et al.  An Overview of the Global Historical Climatology Network-Daily Database , 2012 .

[75]  N. V. Umamahesh,et al.  What are the best covariates for developing non-stationary rainfall Intensity-Duration-Frequency relationship? , 2017 .

[76]  Efi Foufoula-Georgiou,et al.  A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US , 2018, Nature Communications.

[77]  H. Fowler,et al.  Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment , 2010 .

[78]  M. Webb,et al.  Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations , 2006 .