Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti).

Microelectrode mapping techniques were used to study the visuotopic organization of the first and second visual areas (V1 and V2, respectively) in anesthetized Galago garnetti, alorisiform prosimian primate. 1) V1 occupies approximately 200 mm2 of cortex, and is pear shaped, rather than elliptical as in simian primates. Neurons in V1 form a continuous (1st-order) representation of the visual field, with the vertical meridian forming most of its perimeter. The representation of the horizontal meridian divides V1 into nearly equal sectors representing the upper quadrant ventrally, and the lower quadrant dorsally. 2) The emphasis on representation of central vision is less marked in Galago than in simian primates, both diurnal and nocturnal. The decay of cortical magnification factor with increasing eccentricity is almost exactly counterbalanced by an increase in average receptive field size, such that a point anywhere in the visual field is represented by a compartment of similar diameter in V1. 3) Although most of the cortex surrounding V1 corresponds to V2, one-quarter of the perimeter of V1 is formed by agranular cortex within the rostral calcarine sulcus, including area prostriata. Although under our recording conditions virtually every recording site in V2 yielded visually responsive cells, only a minority of those in area prostriata revealed such responses. 4) V2 forms a cortical belt of variable width, being narrowest (approximately 1 mm) in the representation of the area centralis and widest (2.5-3 mm) in the representation of the midperiphery (>20 degrees eccentricity) of the visual field. V2 forms a second-order representation of the visual field, with the area centralis being represented laterally and the visual field periphery medially, near the calcarine sulcus. Unlike in simians, the line of field discontinuity in Galago V2 does not exactly coincide with the horizontal meridian: a portion of the lower quadrant immediately adjacent to the horizontal meridian is represented at the rostral border of ventral V2, instead of in dorsal V2. Despite the absence of cytochrome oxidase stripes, the visual field map in Galago V2 resembles the ones described in simians in that the magnification factor is anisotropic. 5) Receptive field progressions in cortex rostral to dorsal V2 suggest the presence of a homologue of the dorsomedial area, including representations of both quadrants of the visual field. These results indicate that many aspects of organization of V1 and V2 in simian primates are shared with lorisiform prosimians, and are therefore likely to have been present in the last common ancestor of living primates. However, some aspects of organization of the caudal visual areas in Galago are intermediate between nonprimates and simian primates, reflecting either an intermediate stage of differentiation or adaptations to a nocturnal niche. These include the shape and the small size of V1 and V2, the modest degree of emphasis on central visual field representation, and the relatively large area prostriata.

[1]  J. Allman,et al.  The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (aotus trivirgatus) , 1975, Brain Research.

[2]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[3]  J. Kaas,et al.  Interhemispheric connections in neonatal owl monkeys (Aotus trivirgatus) and galagos (Galago crassicaudatus) , 1994, Brain Research.

[4]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[5]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[6]  J. Kaas,et al.  Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey, Aotus trivirgatus , 1975, The Journal of comparative neurology.

[7]  Jonathan C. Horton,et al.  Anatomical Demonstration of Ocular Dominance Columns in Striate Cortex of the Squirrel Monkey , 1996, The Journal of Neuroscience.

[8]  R. Malach,et al.  Patterns of connections in rat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  J. Pettigrew,et al.  Organization of the second visual area in the megachiropteran bat Pteropus. , 1994, Cerebral cortex.

[10]  J. Kaas,et al.  Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus) , 1984, The Journal of comparative neurology.

[11]  A. Cowey PROJECTION OF THE RETINA ON TO STRIATE AND PRESTRIATE CORTEX IN THE SQUIRREL MONKEY, SAIMIRI SCIUREUS. , 1964, Journal of neurophysiology.

[12]  V. Casagrande,et al.  Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus). , 1982, Journal of neurophysiology.

[13]  J. Kaas,et al.  Connections of striate cortex in the prosimian, galago senegalensis , 1978, The Journal of comparative neurology.

[14]  W. L. Clark The antecedents of man , 1959 .

[15]  J. Kaas,et al.  The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. , 1974, Brain research.

[16]  V. Casagrande,et al.  The size and topographic arrangement of retinal ganglion cells in the galago , 1980, Vision Research.

[17]  P. Maclean The Limbic and Visual Cortex in Phylogeny: Further Insights from Anatomic and Microelectrode Studies , 1966 .

[18]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  H. J. Jerison Brain, body and encephalization in early primates , 1979 .

[20]  M. Rosa Visuotopic Organization of Primate Extrastriate Cortex , 1997 .

[21]  M. Mccrossin New species of bushbaby from the middle Miocene of Maboko Island, Kenya. , 1992, American journal of physical anthropology.

[22]  J. Pettigrew,et al.  Improved use of tapetal reflection for eye-position monitoring. , 1979, Investigative ophthalmology & visual science.

[23]  J M Allman,et al.  Magnification in striate cortex and retinal ganglion cell layer of owl monkey: a quantitative comparison , 1977, Science.

[24]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[25]  R. Weller,et al.  Cortical connections of dorsal cortex rostral to V II in squirrel monkeys , 1991, The Journal of comparative neurology.

[26]  W. Andrew The vertebrate visual system , 1957 .

[27]  V. Casagrande,et al.  Morphology of geniculo-striate afferents in a prosimian primate , 1983, Brain Research.

[28]  D. Fitzpatrick,et al.  Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus , 1985, The Journal of comparative neurology.

[29]  P. Goldman-Rakic,et al.  Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates , 1991, The Journal of comparative neurology.

[30]  J. Kaas,et al.  Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nycticebus coucang). , 1993, Brain, behavior and evolution.

[31]  A. Cowey,et al.  Preferential representation of the fovea in the primary visual cortex , 1993, Nature.

[32]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[33]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[34]  V. Casagrande,et al.  Distribution of calcium‐binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus) , 1995, The Journal of comparative neurology.

[35]  N. Mangini,et al.  Retinotopic organization of striate and extrastriate visual cortex in the mouse , 1980, The Journal of comparative neurology.

[36]  R. Fox,et al.  Spatial resolution of the galago , 1986, Vision Research.

[37]  J. Pettigrew,et al.  The decussation of the retinothalamic pathway in the cat, with a note on the major meridians of the cat's eye , 1979, The Journal of comparative neurology.

[38]  R Gattass,et al.  Representation of the visual field in the second visual area in the Cebus monkey , 1988, The Journal of comparative neurology.

[39]  V. Casagrande,et al.  Contrast-sensitivity functions of W-, X-, and Y-like relay cells in the lateral geniculate nucleus of bush baby, Galago crassicaudatus. , 1988, Journal of neurophysiology.

[40]  J. Malpeli,et al.  Laminar and retinotopic organization of the macaque lateral geniculate nucleus: Magnocellular and parvocellular magnification functions , 1996, The Journal of comparative neurology.

[41]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  L. Peichl,et al.  Topography of ganglion cells in the dog and wolf retina. , 1992, The Journal of comparative neurology.

[44]  B. P. Choudhury Retinotopic organization of the guinea pig's visual cortex , 1978, Brain Research.

[45]  W. C. Hall,et al.  Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field. , 1972, Brain research.

[46]  V. Casagrande,et al.  Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: Correlations with patterns of cytochrome oxidase , 1993, The Journal of comparative neurology.

[47]  M. Rosa,et al.  Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex. , 1995, The Journal of physiology.

[48]  M G Rosa,et al.  Retinotopic orgarnzation of the primary visual cortex of flying foxes (Pteropus poliocephalus and pteropus scapulatus) , 1993, The Journal of comparative neurology.

[49]  J. Kaas,et al.  Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos , 1982, The Journal of comparative neurology.

[50]  W. C. Hall,et al.  Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions. , 1970, Journal of neurophysiology.

[51]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  M G Rosa,et al.  Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus , 1994, Visual Neuroscience.

[53]  R Gattass,et al.  Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study , 1991, The Journal of comparative neurology.

[54]  J. Tigges,et al.  Efferent connections of area 17 in Galago. , 1973, American journal of physical anthropology.

[55]  W. B. Spatz,et al.  Morphology and connections of neurons in area 17 projecting to the extrastriate areas mt and 19DM and to the superior colliculus in the monkey Callithrix jacchus , 1995, The Journal of comparative neurology.

[56]  E. Simons,et al.  Skulls and anterior teeth of Catopithecus (primates:Anthropoidea) from the Eocene and anthropoid origins. , 1995, Science.

[57]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[59]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[60]  A. Cowey,et al.  The lengths of thefibres of henle in the retina of macaque monkeys: Implications for vision , 1988, Neuroscience.

[61]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[62]  J. Kaas,et al.  Cortical connections of area 17 in tree shrews , 1984, The Journal of comparative neurology.

[63]  Gregg E. Irvin,et al.  Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus , 1993, Visual Neuroscience.

[64]  Todd M. Preuss,et al.  Cytochrome oxidase 'blobs' and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. , 1996, Brain, behavior and evolution.

[65]  S. Schein,et al.  Mapping of retinal and geniculate neurons onto striate cortex of macaque , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  D. Whitteridge,et al.  The visual areas in the splenial sulcus of the cat , 1973, The Journal of physiology.

[67]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[68]  J. Kaas,et al.  Cortical connections of areas 17 (V‐I) and 18 (V‐II) of squirrels , 1989, The Journal of comparative neurology.

[69]  S. Robson,et al.  Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[70]  V. Perry,et al.  The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus , 1993, Visual Neuroscience.

[71]  V A Casagrande,et al.  Organization of individual afferent axons in layer IV of striate cortex in a primate , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  B M Dow,et al.  The mapping of visual space onto foveal striate cortex in the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  J. Kaas,et al.  Topographic patterns of V2 cortical connections in macaque monkeys , 1996, The Journal of comparative neurology.

[74]  L. Palmer,et al.  The retinotopic organization of area 17 (striate cortex) in the cat , 1978, The Journal of comparative neurology.

[75]  J. Kaas,et al.  The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). , 1975 .

[76]  S. Levay,et al.  Anatomical organization of the visual system of the mink, Mustela vison , 1986, The Journal of comparative neurology.

[77]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[78]  H. Stephan,et al.  QUANTITATIVE COMPARATIVE NEUROANATOMY OF PRIMATES: AN ATTEMPT AT A PHYLOGENETIC INTERPRETATION * , 1969 .

[79]  R. Williams,et al.  Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  M. Law,et al.  Organization of primary visual cortex (area 17) in the ferret , 1988, The Journal of comparative neurology.

[81]  C. Blakemore,et al.  Functional organization in the visual cortex of the golden hamster , 1976, The Journal of comparative neurology.

[82]  J Bullier,et al.  Organization of the callosal connections of visual areas v1 and v2 in the macaque monkey , 1986, The Journal of comparative neurology.

[83]  H. Frahm,et al.  New and revised data on volumes of brain structures in insectivores and primates. , 1981, Folia primatologica; international journal of primatology.

[84]  A. B. Bonds,et al.  Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns. , 1993, Journal of neurophysiology.

[85]  F. Sanides 7 – Representation in the Cerebral Cortex and Its Areal Lamination Patterns , 1972 .

[86]  I. T. Diamond,et al.  Laminar organization of projections of the lateral geniculate nucleus to the striate cortex inGalago , 1976, Brain Research.

[87]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  W. C. Hall,et al.  Visual cortex of the grey squirrel (Sciurus carolinensis): Architectonic subdivisions and connections from the visual thalamus , 1972, The Journal of comparative neurology.

[89]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  J. Allman,et al.  The dorsal third tier area inGalago senegalensis , 1979, Brain Research.

[91]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[92]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[93]  J. Kaas,et al.  Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[94]  V. Montero,et al.  Elaborate organization of visual cortex in the hamster , 1990, Neurosciences research.

[95]  J. Kaas,et al.  Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: Complete reconstructions and quantitative analyses , 1992, Visual Neuroscience.

[96]  A. B. Bonds,et al.  Visual resolution and sensitivity in a nocturnal primate (galago) measured with visual evoked potentials , 1987, Vision Research.

[97]  J. Tigges,et al.  The retinofugal fibers and their terminal nuclei in Galago crassicaudatus (primates) , 1970, The Journal of comparative neurology.

[98]  J. Pettigrew,et al.  Unusual pattern of retinogeniculate projections in the controversial primate Tarsius. , 1996, Brain, behavior and evolution.

[99]  B. Payne,et al.  Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat's cerebral cortex , 1990, Visual Neuroscience.

[100]  B. B. Lee,et al.  Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus , 1996, Visual Neuroscience.

[101]  R. C. Van Sluyters,et al.  The overall pattern of ocular dominance bands in cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  U. Dräger,et al.  Receptive fields of single cells and topography in mouse visual cortex , 1975, The Journal of comparative neurology.

[103]  J M Allman,et al.  The middle temporal visual area(MT)in the bushbaby, Galago senegalensis. , 1973, Brain research.

[104]  M. Silverman,et al.  Functional organization of the second cortical visual area in primates. , 1983, Science.

[105]  Martin I. Sereno,et al.  Cortical visual areas in mammals , 1991 .

[106]  M. Mahboubi,et al.  Earliest known simian primate found in Algeria , 1992, Nature.

[107]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[108]  P S Goldman-Rakic,et al.  Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[109]  R. Gattass,et al.  The projection of the opossum's visual field on the cerebral cortex , 1978, The Journal of comparative neurology.

[110]  C. W. Picanço-Diniz,et al.  Contralateral visual field representation in area 17 of the cerebral cortex of the agouti: A comparison between the cortical magnification factor and retinal ganglion cell distribution , 1991, Neuroscience.

[111]  R Gattass,et al.  Visual topography of V1 in the Cebus monkey , 1987, The Journal of comparative neurology.

[112]  V. Casagrande,et al.  Direct W‐like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: Axon morphology , 1992, The Journal of comparative neurology.

[113]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[114]  R. Martin Primate origins and evolution , 1990 .

[115]  A. Rosenberger,et al.  A fossil owl monkey from La Venta, Colombia , 1987, Nature.

[116]  R Gattass,et al.  Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability , 1989, The Journal of comparative neurology.

[117]  V. Casagrande,et al.  Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis): I. Adult Patterns , 1990, The Journal of comparative neurology.

[118]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[119]  Tao Qi,et al.  A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China , 1994, Nature.