Design of active inductors in SiGe/SiGe:C processes for RF applications

Applicability of silicon-based heterojunction bipolar processes is investigated for designing active inductors with high quality factors (Q). Results for grounded type one-port active inductor incorporating frequency-dependent as well as frequency-independent negative resistances are examined. Later, the negative resistance aspect is extended from one-port to two-port active inductor circuit to ensure its use as a series element. The enhanced Q-values of all the inductive circuits are observed in accordance with the theory. Moderately high-Q values (∼100) with considerable inductances (∼0.2–1 nH) are obtained in the RF frequency ranges (∼5–9 GHz). © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007.

[1]  Xiaochong Cao,et al.  Comparison of the new VBIC and conventional Gummel-Poon bipolar transistor models , 2000 .

[2]  I. Bahl High-performance inductors , 2001 .

[3]  Mau-Chung Frank Chang,et al.  On-chip high-Q (>3000) transformer-type spiral inductors , 2002 .

[4]  Stephen J. Pearton,et al.  GaN n- and p-type Schottky diodes: Effect of dry etch damage , 2000 .

[5]  R. Scholz,et al.  Implementation of a scalable VBIC model for SiGe:C HBTs , 2006 .

[6]  O. Kenneth,et al.  Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies , 1998, IEEE J. Solid State Circuits.

[7]  A. Thanachayanont,et al.  CMOS floating active inductor and its applications to bandpass filter and oscillator designs , 2000 .

[8]  S. Decoutere,et al.  Add-on Cu/SiLK/sup TM/ module for high Q inductors , 2002, IEEE Electron Device Letters.

[9]  R. Groves,et al.  Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology , 1997, IEEE J. Solid State Circuits.

[10]  Lawrence E. Larson,et al.  Microwave transformers, inductors and transmission lines implemented in an Si/SiGe HBT process , 2001 .

[11]  Young-Se Kwon,et al.  High-performance planar inductor on thick oxidized porous silicon (OPS) substrate , 1997, IEEE Microwave and Guided Wave Letters.

[12]  A. Abidi,et al.  Large suspended inductors on silicon and their use in a 2- mu m CMOS RF amplifier , 1993, IEEE Electron Device Letters.

[13]  C. K. Maiti,et al.  Comparison of state-of-the-art bipolar compact models for SiGe-HBTs , 2004 .

[14]  D. Pehlke,et al.  Extremely high-Q tunable inductor for Si-based RF integrated circuit applications , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[15]  S. Moinian,et al.  High Q inductors for wireless applications in a complementary silicon bipolar process , 1996 .

[16]  Gary K. Fedder,et al.  Micromachined high-Q inductors in a 0.18-/spl mu/m copper interconnect low-k dielectric CMOS process , 2002 .

[17]  Kari Stadius,et al.  Active inductors for GaAs and bipolar technologies , 1995 .

[18]  R. Meyer,et al.  Si IC-compatible inductors and LC passive filters , 1990 .

[19]  Asad A. Abidi Noise in active resonators and the available dynamic range , 1992 .

[20]  Stepan Lucyszyn,et al.  Monolithic narrow-band filter using ultrahigh-Q tunable active inductors , 1994 .

[21]  Ali M. Niknejad,et al.  Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs , 1998, IEEE J. Solid State Circuits.

[22]  Cheon Soo Kim,et al.  The detailed analysis of high Q CMOS-compatible microwave spiral inductors in silicon technology , 1998 .

[23]  Wei Li,et al.  High Q active inductor with loss compensation by feedback network , 1999 .

[24]  B. Senapati,et al.  Advanced SPICE modelling of SiGe HBTs using VBIC model , 2002 .

[25]  J. W. Haslett,et al.  A fully integrated active inductor with independent voltage tunable inductance and series-loss resistance , 2001 .

[26]  Daniel C. Edelstein,et al.  Spiral inductors and transmission lines in silicon technology using copper-damascene interconnects and low-loss substrates , 1997 .

[27]  D. Edelstein,et al.  RF circuit design aspects of spiral inductors on silicon , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[28]  Kenjiro Nishikawa,et al.  High-Q factor three-dimensional inductors , 2002 .

[29]  Luca Fanucci,et al.  High-quality active inductors , 1999 .

[30]  Inder J. Bahl Improved quality factor spiral inductors on GaAs substrates , 1999 .

[31]  K. Jenkins,et al.  Microwave inductors and capacitors in standard multilevel interconnect silicon technology , 1996 .

[32]  J.N. Burghartz,et al.  Novel substrate contact structure for high-Q silicon-integrated spiral inductors , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[33]  Masahiro Muraguchi,et al.  A high-Q broad-band active inductor and its application to a low-loss analog phase shifter , 1996 .

[34]  T. Tokumitsu,et al.  Lossless broad-band monolithic microwave active inductors , 1989 .

[35]  G. F. Zhang,et al.  New broadband tunable monolithic microwave floating active inductor , 1992 .

[36]  J. Long,et al.  The modeling, characterization, and design of monolithic inductors for silicon RF IC's , 1997, IEEE J. Solid State Circuits.

[37]  Werner Weber,et al.  Experimental investigation of the minimum signal for reliable operation of DRAM sense amplifiers , 1992 .

[38]  Josep Samitier,et al.  Improvement of the quality factor of RF integrated inductors by layout optimization , 1998, RFIC 1998.

[39]  Michiel Steyaert,et al.  A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors , 1997, IEEE J. Solid State Circuits.