Motion of Classic and Spontaneous Hot Flow Anomalies Observed by Cluster

The propagation characteristics of hot flow anomalies (HFAs) near the Earth's bow shock are investigated, using observations from the Cluster spacecraft. A data set comprised of 19 classic HFAs (associated with tangential discontinuities, TDs) and 23 spontaneous HFAs (SHFAs, formed in the absence of solar wind discontinuities) was analyzed. For each event, the propagation velocity and normal of leading and trailing HFA edges were calculated using multiple multi‐point satellite analysis methods. For classic HFAs, 93% of the events have leading edge (LE) normal directions within 30° of the normal direction of the driving TDs. For SHFAs, in 74% of the events, the angle between the normal of an SHFA's edges and background magnetic field is in the range of 70°–110° and no angle is in the ranges of 0°–20° and 160°–180°. These results indicate that the LEs of the classic HFAs propagate along the same direction as the driving TDs and most SHFAs propagate quasi‐perpendicular to the background magnetic field and no SHFAs propagate parallel or anti‐parallel to the background magnetic field. Moreover, according to the velocity of HFAs' edges, we find that all classic HFAs and SHFAs' edges propagate toward the Earth in the spacecraft frame as expected and 5 out of 7 SHFAs are contracting and no expanding SHFAs are found. This study provides key parameters to help understand how HFAs disturb the magnetosphere.

[1]  T. Liu,et al.  A Foreshock Bubble Driven by an IMF Tangential Discontinuity: 3D Global Hybrid Simulation , 2021, Geophysical Research Letters.

[2]  Hongqiao Hu,et al.  Statistical properties of kinetic‐scale magnetic holes in terrestrial space , 2020 .

[3]  V. Angelopoulos,et al.  Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients , 2020, Journal of Geophysical Research: Space Physics.

[4]  V. Angelopoulos,et al.  ARTEMIS Observations of Foreshock Transients in the Midtail Foreshock , 2020, Geophysical Research Letters.

[5]  T. Liu,et al.  Evolution of a Foreshock Bubble in the Midtail Foreshock and Impact on the Magnetopause: 3‐D Global Hybrid Simulation , 2020, Geophysical Research Letters.

[6]  C. Russell,et al.  Kinetic-scale Flux Rope in the Magnetosheath Boundary Layer , 2020, The Astrophysical Journal.

[7]  B. Mauk,et al.  Microscopic, Multipoint Characterization of Foreshock Bubbles With Magnetospheric Multiscale (MMS) , 2020, Journal of Geophysical Research: Space Physics.

[8]  C. Russell,et al.  Propagating and Dynamic Properties of Magnetic Dips in the Dayside Magnetosheath: MMS Observations , 2020, Journal of Geophysical Research: Space Physics.

[9]  I. J. Rae,et al.  Ion‐Scale Flux Rope Observed inside a Hot Flow Anomaly , 2020, Geophysical Research Letters.

[10]  G. Collinson,et al.  Foreshock Bubbles at Venus: Hybrid Simulations and VEX Observations , 2020, Journal of Geophysical Research: Space Physics.

[11]  A. Degeling,et al.  Propagation properties of foreshock cavitons: Cluster observations , 2020, Science China Technological Sciences.

[12]  I. J. Rae,et al.  Electron Mirror-mode Structure: Magnetospheric Multiscale Observations , 2019, The Astrophysical Journal.

[13]  V. Angelopoulos,et al.  The 2‐D Structure of Foreshock‐Driven Field Line Resonances Observed by THEMIS Satellite and Ground‐Based Imager Conjunctions , 2019, Journal of Geophysical Research: Space Physics.

[14]  H. Hasegawa,et al.  Dimensionality, Coordinate System and Reference Frame for Analysis of In-Situ Space Plasma and Field Data , 2019, Space Science Reviews.

[15]  I. J. Rae,et al.  Waves in Kinetic‐Scale Magnetic Dips: MMS Observations in the Magnetosheath , 2019, Geophysical Research Letters.

[16]  A. Masson,et al.  Multispacecraft Observations of Tailward Propagation of Transient Foreshock Perturbations to Midtail Magnetosheath , 2018, Journal of Geophysical Research: Space Physics.

[17]  X. Blanco‐Cano,et al.  Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation , 2018, Annales Geophysicae.

[18]  I. J. Rae,et al.  Dayside Magnetospheric and Ionospheric Responses to a Foreshock Transient on 25 June 2008: 1. FLR Observed by Satellite and Ground‐Based Magnetometers , 2018, Journal of Geophysical Research: Space Physics.

[19]  A. Degeling,et al.  Electron Dynamics in Magnetosheath Mirror‐Mode Structures , 2018, Journal of Geophysical Research: Space Physics.

[20]  V. Angelopoulos,et al.  Dayside Magnetospheric and Ionospheric Responses to a Foreshock Transient on 25 June 2008: 2. 2‐D Evolution Based on Dayside Auroral Imaging , 2018, Journal of Geophysical Research: Space Physics.

[21]  C. Russell,et al.  Magnetospheric Multiscale Observations of Electron Scale Magnetic Peak , 2017 .

[22]  M. Dougherty,et al.  A Single Deformed Bow Shock for Titan‐Saturn System , 2017 .

[23]  B. Jakosky,et al.  Spontaneous hot flow anomalies at Mars and Venus , 2017 .

[24]  P. Louarn,et al.  Hot flow anomaly observed at Jupiter's bow shock , 2017 .

[25]  H. Zhang,et al.  Global ULF waves generated by a hot flow anomaly , 2017 .

[26]  V. Angelopoulos,et al.  A multispacecraft event study of Pc5 ultralow‐frequency waves in the magnetosphere and their external drivers , 2017 .

[27]  V. Angelopoulos,et al.  THEMIS satellite observations of hot flow anomalies at Earth's bow shock , 2017 .

[28]  Z. Y. Li,et al.  Observations of kinetic‐size magnetic holes in the magnetosheath , 2017, 1701.01822.

[29]  Z. Y. Li,et al.  Propagation of small size magnetic holes in the magnetospheric plasma sheet , 2016 .

[30]  D. Sibeck,et al.  Magnetosheath plasma structures and their relation to foreshock processes , 2015 .

[31]  L. L. Zhao,et al.  Case and statistical studies on the evolution of hot flow anomalies , 2015 .

[32]  H. Zhang,et al.  Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations , 2015 .

[33]  H. Zhang,et al.  Parametric dependencies of spontaneous hot flow anomalies , 2014 .

[34]  T. Horbury,et al.  The role of pressure gradients in driving sunward magnetosheath flows and magnetopause motion , 2014, 1406.0301.

[35]  N. Shane,et al.  A survey of hot flow anomalies at Venus , 2014 .

[36]  Q. Zong,et al.  Hot flow anomaly formation and evolution: Cluster observations , 2013 .

[37]  B. Anderson,et al.  Active current sheets and candidate hot flow anomalies upstream of Mercury's bow shock , 2013, 1306.5001.

[38]  H. Zhang,et al.  Spontaneous hot flow anomalies at quasi‐parallel shocks: 1. Observations , 2013 .

[39]  H. Zhang,et al.  Spontaneous hot flow anomalies at quasi‐parallel shocks: 2. Hybrid simulations , 2013 .

[40]  V. Angelopoulos,et al.  The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity , 2013 .

[41]  Q. Zong,et al.  Cluster observations of hot flow anomalies with large flow deflections: 1. Velocity deflections , 2012 .

[42]  James A. Slavin,et al.  Hot Flow Anomalies at Venus , 2012 .

[43]  C. Russell,et al.  Foreshock cavitons for different interplanetary magnetic field geometries: Simulations and observations , 2011 .

[44]  T. Horbury,et al.  Transient Pc3 wave activity generated by a hot flow anomaly: Cluster, Rosetta, and ground-based observations , 2011 .

[45]  V. Angelopoulos,et al.  Polar UVI and THEMIS GMAG observations of the ionospheric response to a hot flow anomaly , 2011 .

[46]  V. Angelopoulos,et al.  Time History of Events and Macroscale Interactions during Substorms observations of a series of hot flow anomaly events , 2010 .

[47]  N. Omidi,et al.  Foreshock bubbles and their global magnetospheric impacts , 2010 .

[48]  V. Angelopoulos,et al.  THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly , 2009 .

[49]  C. Russell,et al.  Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry , 2009 .

[50]  K. Glassmeier,et al.  THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground‐based measurements , 2008 .

[51]  I. Dandouras,et al.  On the edge of the foreshock: model-data comparisons , 2008 .

[52]  S. Schwartz,et al.  Cassini encounters with hot flow anomaly‐like phenomena at Saturn's bow shock , 2008 .

[53]  S. Solomon,et al.  MESSENGER and Venus Express observations of the solar wind interaction with Venus , 2007 .

[54]  N. Omidi Formation of cavities in the foreshock , 2007 .

[55]  D. Sibeck,et al.  Formation of hot flow anomalies and solitary shocks , 2007 .

[56]  F. Mozer,et al.  Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock , 2006 .

[57]  M. Dunlop,et al.  Motion of observed structures calculated from multi‐point magnetic field measurements: Application to Cluster , 2006 .

[58]  M. Dunlop,et al.  Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster , 2005 .

[59]  R. Treumann,et al.  The Foreshock , 2005 .

[60]  T. Mukai,et al.  Radial dependence of foreshock cavities: a case study , 2004 .

[61]  T. Horbury,et al.  Four‐point discontinuity observations using Cluster magnetic field data: A statistical survey , 2004 .

[62]  E. Zesta,et al.  A detailed description of the solar wind triggers of two dayside transients: Events of 25 July 1997 , 2004 .

[63]  H. Singer,et al.  Pressure‐pulse interaction with the magnetosphere and ionosphere , 2003 .

[64]  W. Hughes,et al.  A statistical study of traveling convection vortices using the Magnetometer Array for Cusp and Cleft Studies , 2002 .

[65]  A. Szabo,et al.  Wind observations of foreshock cavities: A case study , 2002 .

[66]  E. Zesta,et al.  Signatures of traveling convection vortices in ground magnetograms under the equatorial electrojet , 2002 .

[67]  Y. Lin Global hybrid simulation of hot flow anomalies near the bow shock and in the magnetosheath , 2002 .

[68]  J. K. Chao,et al.  Models for the size and shape of the earth's magnetopause and bow shock , 2002 .

[69]  T. Horbury,et al.  Prediction of Earth arrival times of interplanetary southward magnetic field turnings , 2001 .

[70]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[71]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[72]  D. Mitchell,et al.  Hot diamagnetic cavities upstream of the Martian bow shock , 2001 .

[73]  H. Singer,et al.  Magnetopause motion driven by interplanetary magnetic field variations , 2000 .

[74]  Eric Donovan,et al.  The auroral signature of earthward flow bursts observed in the magnetotail , 2000 .

[75]  M. Dunlop,et al.  Conditions for the formation of hot flow anomalies at Earth's bow shock , 2000 .

[76]  W. Hughes,et al.  The November 9, 1993, traveling convection vortex event : A case study , 1999 .

[77]  David G. Sibeck,et al.  Comprehensive study of the magnetospheric response to a hot flow anomaly , 1999 .

[78]  S. Schwartz Hot flow anomalies near the Earth's bow shock , 1995 .

[79]  C. Russell,et al.  Observational test of hot flow anomaly formation by the interaction of a magnetic discontinuity with the bow shock , 1993 .

[80]  M. Thomsen,et al.  Hybrid simulation of the formation of a hot flow anomaly , 1991 .

[81]  G. Haerendel,et al.  Three-dimensional plasma structures with anomalous flow directions near the Earth's bow shock , 1988 .

[82]  C. Russell,et al.  Hot, diamagnetic cavities upstream from the Earth's bow shock , 1986 .

[83]  S. Schwartz,et al.  An active current sheet in the solar wind , 1985, Nature.

[84]  C. Russell,et al.  Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals , 1983 .

[85]  L. Burlaga,et al.  Multispacecraft observations of microscale fluctuations in the solar wind , 1977 .

[86]  P. D. Hudson,et al.  Discontinuities in an anisotropic plasma and their identification in the solar wind , 1970 .

[87]  L. Burlaga,et al.  Tangential discontinuities in the solar wind , 1969 .

[88]  L. Burlaga Directional discontinuities in the interplanetary magnetic field , 1969 .

[89]  L. J. Cahill,et al.  Magnetopause structure and attitude from Explorer 12 observations. , 1967 .