Torque ripple optimization in switched reluctance motor using two-phase model and optimization search technique

A torque ripple optimization scheme for SRM drive, based on exhaustive search method and 2-phase excitation model of SRM has been presented in this paper. The 2-phase excitation model of SRM used here takes into account the nonlinear effects because of saturation and mutual flux linkages caused by multi-phase excitation. In the proposed scheme the incoming and outgoing phase currents are modulated to minimize the torque ripple. Because of the highly nonlinear nature of torque, exhaustive search method is used for optimizing the torque ripple, by simulating the model multiple times. Modulation of phase current is done by addition, subtraction and multiplication of constants and variables. This can be very easily achieved in DSP micro-controllers and FPGAs. It has been shown by simulations, that the proposed optimization scheme reduces the torque ripple by more than 50% as compared to constant current scheme. The proposed optimization scheme has been experimentally validated