Crisp and fuzzy integer programming models for optimal carbon sequestration retrofit in the power sector

Carbon capture and storage (CCS) is one of the interim technologies to mitigate greenhouse gas emissions from stationary sources such as power plant and large industrial facilities. CCS allows for continued utilization of fossil fuels (e.g. coal, natural gas and oil), which are still relatively inexpensive and reliable in comparison to inherently low-carbon renewable resources (e.g. wind, solar etc.). On the other hand, retrofitting power plants for carbon capture (CC) entails major capital costs as well as reduction of thermal efficiency and power output. This paper presents integer programming optimization models for planning the retrofit of power plants at the regional, sectoral or national level. In addition to the base case (i.e., non-fuzzy or crisp) formulation, two fuzzy extensions are given to account for the inherent conflict between environmental and economic goals, as well as parametric uncertainties pertaining to the emerging CC technologies. Case studies are shown to illustrate the modeling approach.

[1]  James J. Buckley,et al.  Monte Carlo Methods in Fuzzy Optimization , 2008, Studies in Fuzziness and Soft Computing.

[2]  Terry Wall,et al.  Combustion processes for carbon capture , 2007 .

[3]  Denny K. S. Ng,et al.  Pinch analysis approach to carbon-constrained planningfor sustainable power generation , 2009 .

[4]  Varun,et al.  LCA of renewable energy for electricity generation systems—A review , 2009 .

[5]  Raymond R. Tan,et al.  Hybrid evolutionary computation for the development of pollution prevention and control strategies , 2007 .

[6]  Raymond R. Tan,et al.  A fuzzy linear programming extension of the general matrix-based life cycle model , 2008 .

[7]  Omar M. Saad,et al.  Solving a special class of large-scale fuzzy multiobjective integer linear programming problems , 1999, Fuzzy Sets Syst..

[8]  Francisco Herrera,et al.  Boolean programming problems with fuzzy constraints , 1993 .

[9]  RajenderKumar Gupta,et al.  Oxy-fuel combustion technology for coal-fired power generation , 2005 .

[10]  Daniel Weisser,et al.  A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies , 2007 .

[11]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[12]  Joris Koornneef,et al.  Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2 , 2008 .

[13]  Kourosh Eshghi,et al.  SPECIAL CLASSES OF FUZZY INTEGER PROGRAMMING MODELS WITH ALL-DIFFERENT CONSTRAINTS , 2009 .

[14]  Anders Hansson,et al.  Expert opinions on carbon dioxide capture and storage—A framing of uncertainties and possibilities , 2009 .

[15]  R. Quadrelli,et al.  The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion , 2007 .

[16]  R. Steeneveldt,et al.  CO2 Capture and Storage: Closing the Knowing–Doing Gap , 2006 .

[17]  André Faaij,et al.  Planning for an electricity sector with carbon capture and storage , 2008 .

[18]  Toby Aiken,et al.  Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations , 2010 .

[19]  C. Carlsson,et al.  A parametric approach to fuzzy linear programming , 1986 .

[20]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[21]  Raymond R. Tan,et al.  Using fuzzy numbers to propagate uncertainty in matrix-based LCI , 2008 .

[22]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[23]  Behdad Moghtaderi,et al.  An overview on oxyfuel coal combustion—State of the art research and technology development , 2009 .

[24]  Feng-Tse Lin,et al.  Solving the knapsack problem with imprecise weight coefficients using genetic algorithms , 2008, Eur. J. Oper. Res..